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ABSTRACT

A Statistical Methodology for
Constructing Synthetic Test Workloads (May 1979)
Wayne Thomas Graybeal, B.S., University of Oklahoma

M.A., University of Arizona

Chairman of Advisory Committee: Dr. Udo W. Pooch

{

Computer performance measurement and evaluation (CPME) studies

are conducted for the purpose of sizing and selecting a new system
(selection studies); during the design phase of either a new system or
a hardware/software modification to an existing system to assess the
impact of the new system/modification (performance projection studies);

or to assess and improve the level of performance of an existing

system (performance monitoring studies). Nearly all performance mea-

sures used are related to the workload being processed by the system.
There is the need f ' a workload which emulates the actual workload,

yet executes in less time and does not compromise the adequacy of

the measurements. Such a workload is called a drive or test workload.

A statistical methodology is proposed to aid in the construction
of a test work]oad.thhe major elements of this methodology are
(a) selecting;thg workload subset by constructing an overall

workload profile aﬁd tgég choosing a period which exhibits character-
istics pertinent to the evaluation study,
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(b) choosing a set of descriptor variables which is detailed
enough to represent the demand placed upon the major system resources,
but is not so detailed as to complicate later stages of the analysis,

(c) collecting data reflecting the values of the descriptor
variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor
has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource
demand matrix and retaining only those components needed to explain the
major part of the variability in the data,

(f) clustering the transformed resource demand vectors in the
1 principal components space using a non-hierarchical clustering algo-
rithm with a weighted Euclidean distance measure,

(g) designing synthetic jobs for each of the isolated clusters

using regression analysis to obtain predictor equations for the param-
eter settings,

(h) forming a synthetic job mix by combining a sufficient number
of copies of the various synthetic jobs with appropriate parameter
settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it
on the system being studied, comparing its resource demand character-

: ) istics with those of the real subset, and adjusting the parameter set-
tings as necessary.

A detailed case study of the workload processed by the Amdahl
470/V6 at Texas A8M University is presented illustrating many of the

proposed techniques. Suggestions for further work are included.
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ABSTRACT

A Statistical Methodology for
Constructing Synthetic Test Workloads (May 1979)
Wayne Thomas Graybeal, B.S., University of Oklahoma
M.A., University of Arizona

Chairman of Advisory Committee: ODr. Udo W. Pooch

Computer performance measurement and evaluation (CPME) studies
are conducted for the purpose of sizing and selecting a new system
(selection studies); during the design phase of either a new system or
a hardware/software modification to an existing system to assess the
impact of the new system/modification (performance projection studies)
or to assess and improve the level of performance of an existing
system (performance monitoring studies). Nearly all performance mea-
sures used are related to the workload being processed by the system.
There is the need for a workload which emulates the actual workload,
yet executes in less time and does not compromise the adequacy of

the measurements. Such a workload is called a drive or test workload.

A statistical methodology is proposed to aid in the construction
of a test workload. The major elements of this methodology are

(a) selecting the workload subset by constructing an overall
workload profile and then choosing a period which exhibits character-

istics pertinent to the evaluation study,
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(b) choosing a set of descriptor variables which is detailed
enough to represent the demand placed upon the major system resources,
but is not so detailed as to complicate later stages of the analysis,

(c) collecting data reflecting the values of the descriptor
variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor
has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource
demand matrix and retaining only those components needed to explain the
major part of the variability in the data,

(f) clustering the transformed resource demand vectors in the
principal components space using a non-hierarchical clustering algo-
rithm with a weighted Euclidean distance measure,

(g) designing synthetic jobs for each of the isolated clusters
using regression analysis to obtain predictor equations for the param-
eter settings,

(h) forming a synthetic job mix by combining a sufficient number
of copies of the various synthetic jobs with appropriate parameter
settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it
on the system being studied, comparing its resource demand character-
istics with those of the real subset, and adjusting the parameter set-
tings as necessary.

A detailed case study of the workload processed by the Amdahl
470/V6 at Texas A&M University is presented illustrating many of the

proposed techniques. Suggestions for further work are included.
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CHAPTER 1

INTRODUCTION

1.1 Background

The development of the electronic digital computer, begun in the
late 1940's and continuing until the present time, has had a dramatic
effect on nearly every field of human endeavor. Rapid advances in both
hardware and software have exceeded even the most ambitious projections.
With each advance in hardware and/or software came another level of
complexity. This led to the ultra-fast, highly sophisticated systems
of today in which the synergistic effects of their combined hardware
and software subsystems can yield performance which is surprising even
to the system designer. It has been suggested [78] that these systems
are too complicated for the problems they are intended to solve, and
that their complexity makes them inherently inefficient. The degree of
truth in these suggestions may be debated, however it is apparent that
the computer has evolved into one of the most complicated systems

) ' ' yet devised by man.

The Communications of the Association for Computing Machinery is
used as a pattern for format and style.
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Computer Performance Measurement and Evaluation (CPME) is a term
coined to refer to a loosely-defined branch of computer science. It
has evolved to satisfy the need for understanding and predicting the
performance of computer systems. As the name implies, there are two
different aspects to the study of the performance of a computer system.
The first is measurement, the act of ascertaining the extent of the
performance. The second is evaluation, the act of examining or judging
the value of performance [29]. This field is not a new one [20], how-
ever, recent technical advances in hardware and a rethinking of the
problem have led to a broadening of scope. While the early researchers
were concerned with only the performance of the hardware [64], the
performance of a given computer system has been realized to be a
function of the total hardware/software package. Thus, such seemingly
unrelated areas as program behavior [85], computational complexity [6]
and software engineering [38] have been recognized as having an impact

on the performance of computer systems.

1.2 Types of Evaluation Studies

The development, acquisition and maintenance of a computer
system is an expensive proposition. Unfortunately, an efficient and
an effective system appears to be the exception rather than the rule
[(56]. Thus, there is a continuing interest, both on the part of man-
agement as well as system analysts, in the understanding and in the
improving of the performance of computer systems.

Lucas [64] classified evaluation studies by the reasons for which

‘A




they are conducted. Selection evaluation studies are conducted for the

purpose of sizing and selecting a new system. This type of evaluation
assumes that the relative performance in accomplishing a certain task is
a factor in choosing one system over another system. Performance
projection studies, on the other hand, are conducted during the design
phase of either a new system or a hardware/software modification to an
existing system. The aim of such a study is to assess the impact that
certain features of the new system or subsystem will have on the
system's performance. Such an evaluation is handicapped in most cases
by the lack of a prototype. The results obtained are therefore
largely theoretical and subject to validation once the system or
subsystem design is implemented. The third type of evaluation is

termed performance monitoring. This type of study has as its aim the

assessment and improvement of the level of performance of current
systems. Results of this type of evaluation can be used to "tune” a
system, thus attaining a higher level of efficiency; to establish a
profile of system activity in order to apply priority algorithms and
establish billing procedures; or to forecast the impact of a proposed
change in either the system or the workload.

There appears to be a degree of commonality in both purpose and
technique in the classifications proposed by Lucas[64]. On the other
hand, a more meaningful classification might be one proposed by
Svobodova [88]. A study which is conducted to assess the performance

of one system relative to another is called a comparative evaluation.
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A study that is conducted to evaluate the system's performance relative
to system parameters and/or system workload is termed an analytical

evaluation.

1.3 Evaluation Techniques

Three general techniques have emerged in the evaluation of
computer systems: analytical, simulation, and empirical [39]. The
technique to use is affected by such factors as why the study is
being conducted, the level of detail needed in the study, and the
availability of the system being studied.

Analytical techniques are characterized by the representation of

the system in the form of a mathematical model, and the solution tech-
niques using ordinary mathematical means. Probably the most common
mathematical model of a computer system is that of a queuing system
[10,17,19,21,27,37,77]. In this representation, the system or sub-
system being studied is considered as a service facility. Jobs or
tasks are considered as customers arriving to the service facility
requiring some quantity of service [40,58]. There are a number of
disadvantages to using analytical techniques in an evaluation study.

First, a mathematical model which is detailed enough to accurately

represent today's highly complex computer system is likely to be

mathematically intractable. Second, in an effort to make the model
solvable, the researcher may be required to make a number of assump-
tions. For example, if a queuing model is used, it is common to assume
that the interarrival times are independent and that the system has

achieved a stochastic balance (steady state) [40,88]. The validity




of such assumptions can certainly be questioned in many studies.
A third disadvantage is that even if the system is accurately represen-
ted and the assumptions deemed valid, the researcher has the problem
of estimating system parameters. For these reasons, analytical tech-
niques have found little utility in full-scale performance evaluation
studies. They have, however, been used in studies involving subsystems
or particular aspects of a system's behavior such as CPU scheduling
[57,68], and the management of 1/0 channels [34,84]. +
The second general technique used in evaluation studies is simula-
tion. In this technique, the structure of the system is reflected in
a computer program. The behavior of the system under particular condi-
tions can then be studied by varying the parameters of the simulator. This
technique avoids the problem of intractability encountered in analytic
methods, and generally does not require the researcher to make as many
assumptions. There are, however, problems with this technique as well.
If a high degree of detail is required in the system model, the simula-
tor can become quite expensive to develop and to use. Furthermore,
to be a useful tool, the simulator must be validated. That is, it must
be demonstrated that the simulator behaves in the same manner as the y
real system when presented with identical conditions. Often this aspect

of the simulation study is neglected [39], which leads to questionable

interpretation of any results. There are many examples in the litera-
ture [60,61] of full scale system simulations.

The third general category of evaluation techniques involves

studies made through the observation of some real system (empirical
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analysis). This generally entails the collection and analysis of data
reflecting the system's performance. Much data is collected through
accounting logs and other means at every computer installation. It

has only been recently that a serious attempt has been made at analy-
zing this data. Empirical techniques, aside from their utility in
conducting separate evaluation studies, also provide a means of vali-
dating results obtained from an analytical or simulation study [39].
Problems encountered in using empirical techniques include the unavail-
ability of the system and the degradation of system performance because

of the monitoring process.

1.4 Perfermance Measures

In the past, the relative performance capability of a computer
systen was judged by such hardware characteristics as CPU cycle time,

memory accass time and the time needed to execute particular operations

(i.e. add) [64,68]. It was thought that the shorter these times were,
the more "powerful" the system was and hence the higher its performance

rating. In later years, especially with multiprogrammed systems, it has

become apparent that, although important, these measures are generally
inadequate in characterizing the performance of a given system. Many
other "performance measures” have been developed and are considered to be

more useful in assessing performance. Some of the more popular of these

measures are detailed below. For a more complete 1ist, see Svobodova [88]. i
One of the more common measures of the performance of a computer
system is throughput. Throughput is defined to be the amount of useful

work completed per unit time when executing a given workload [9,56,88].
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Since throughput is generally used in comparative evaluation studies, a
related measure, relative throughput, has been developed. The relative
throughput is defined as the ratio of the elapsed time required to
process a given workload on one system versus the time required to
process the same identical workload on another system [29,41,88]. Still

another related measure is the throughput rate, defined to be the aver-

age number of task completions per unit time [75].
With the advent of multiprogrammed systems, a number of measures
were developed to assess the performance of these systems relative to

monoprogrammed systems. One of these is the Elapsed Time Multiprogram-

ming Factor (ETMF) which is defined [82,88] as the ratio of the turn-

around time of a job in a multiprogrammed environment to the turnaround
time when it is the only job in the system. Another related measure is

the gain factor {88] which is the total system time needed to execute a

set of jobs in a multiprogrammed environment to the total system time
needed to execute the same set of jobs serially. Still another measure

related to multiprogramming is the internal delay time [88], which is

the ratio of processing time of a job in a multiprogramming environment
to the time required when it is the only job in the system.

Other advances in software and hardware necessitated more measures
of a system's performance. For example, virtual memory systems neces-
sitated a measure of the behavior of page and segment replacement rules.

Page (segment) fault rate [23,88] is the most frequently used measure of

this performance.




1.5 Means of Measurement

An empirical performance evaluation study requires that data be

collected on the system activity. There are a number of ways this data

can be collected. The simplest way [75] is through a simple observation

of the system utilizing the system console and the behavior of I1/0
units as an indication of system performance. The type of information
which could be gained through this type of observation would appear to
be severely limited. Another source of information on the behavior of
the system is from the system accounting logs . These 1ogs can be used to
obtain information on resource utilization at a job or job-step level.
A third source is utilizing a monitor. There are three general types
of monitors available: hardware, software and hybrid.

A hardware monitor [15,75] is logically and physically distinct

from the system being monitored. System activity is routed to the
monitor through a series of probes. For instance, the period of time
a processor spends in the WAIT state could be monitored by installing
a probe on the line Teading to the WAIT 1ight on the system console.
Hardware monitors, though they can be used to measure essentially
any event, are limited in that they cannot give an indication as to
the cause of the event.

An alternative to the hardware monitor is the software monitor.

Software monitors are programs which reside on the system being moni-

tored. There are two general types of software monitors. The first,
the interrupt-intercept monitor [75] is activated whenever an event

which causes an interrupt occurs. Rather than control being passed




directly to the interrupt handler, it is instead routed to the monitor
which records the system state and then passes control to the appropri-
ate interrupt handler. The second type, the sampling monitor, is acti-
vated at certain time intervals, at which time it records the system
state. Regardless of which type of software monitor is used, there is
a serious drawback. That is since the monitor is resident in the host
system, it competes for system resources along with normal jobs. Thus,
the use of a software monitor can degrade system performance through
the introduction of additional system overhead. This degradation has
been termed the "artifact" of using a software monitor. This artifact
can be a serious problem in evaluation studies, since the results
obtained on system activity are biased to some degree.

In an effort to minimize the disadvantages of pure hardware and
software monitors, the hybrid monitor has been developed. The hybrid
monitor 1is essentially a combination of the two previous approaches.

A minicomputer is novmally attached as an "intelligent" terminal to the
host computer. Hardware probes are used to detect event occurrences,
just as in the pure hardware approach. In addition, the hybrid monitor
has the ability to interrupt the host system and cause status informa-
tion to be sent to it. Thus, a hybrid monitor can link event occur-
rences to their causes, which pure hardware monitors cannot. Further,
since the required software support within the host system is limited,

the software monitor artifact is reduced. This approach to monitoring

appears to be the most promising.
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1.6 Influence of Workload on System Performance

Nearly all of the performance measures mentioned earlier related
the performance of a system to a particular workload. It has long been
recognized [13] that the choice of the workload will have a major
impact on the observed performance. For example, if one of the aspects
of system performance that is being studied is the percent of channel
utilization, an I/0 bound workload would provide entirely different
results from that of a compute-bound workload.

The workload (jobload) of a computer system is defined [75] as the
set of all programs, data, and commands that are submitted to the
system for subsequent execution. Since a workload has such a dramatic
effect on the performance of a given computer system, the problem of
how to represent or characterize the workload has arisen in practically
every computer system evaluation study undertaken [32]. In many cases,
workload characterization is the hardest technical problem to solve
for the investigator [32]. There are many reasons for this, the chief
one being the nonrecurrent nature of a computer workload. That is, if
a system is handling a repetitive workload in which the same set of
requests are made cyclically, then the workload characterization
problem could be solved simply by examining the set of requests made in
one cycle. Unfortunately, in most cases the workload is not repetitive,
hence no general model can be developed.

Executing the entire job profile on each potential computer system
that is to be evaluated can be expensive and time consuming . Thus, there

is the need for a workload which emulates the actual workload, yet

oot ek i e e o
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executes in less time and does not compromise the adequacy of the

measurements. Such a workload is called a drive or test workload.

The form of the test workload depends upon the techniques used
in the evaluation study. If empirical studies of the system are made,
the test workload will consist of an executable job stream. When
analytical models of the system are used, the test workload could be
represented in the form of interarrival and service distributions [23].
A simulation study would require an abbreviated job description in a

form compatible with the simulator that uses this workload.

1.7 Properties of Test Workloads

Regardless of the form of the test workload, there are a number of
properties which the test workload should possess to enhance its use-
fulness in an evaluation study. Ferrari [32] lists eight such proper-
ties. Some of the more important of these properties are given below.

Representativeness. The most important characteristic of a test

workload is that it be representative of the actual workload. A test
workload is representative if the system's measured performance when
executing the test workload approximates the system's measured perform-
ance when executing the actual workload. This definition implies the
existence of a distance function or metric by which it is possible to
measure the relative degree of representativeness between two candi-
date test workloads. Unfortunately, such a metric does not exist,
since the degree of representativeness depends not only on the perform-
ance measures used, but also on the relative weights assigned to each

measure. [31].
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Reproducibility. Aside from being representative, a test workload

must be reproducible. Comparative evaluations as defined earlier are
designed to assess the relative performance of two or more systems. If
the effects of the different performance capabilities of the systems
are to be isolated, the same test workload must be executed on each
system. If different test workloads are executed, any variation in the
obtained performance measures could be due to either the test workload
or the actual system differences. A second reason that system test
workloads must be reproducible is that a replication of the basic eval-
uation experiment may be desirable. This repetition allows for greater
credence in the results.

Flexibility. A flexible test workload is one that can be easily
modified. A researcher may wish to modify the test workload for a
number of reasons. First, the actual workload of a computer system is
1ikely to change over time. If the test workload is to remain repre-
sentative, it must be changed also. Second, in establishing the
representativeness of a test workload, it may be necessary to itera-
tively adjust the characteristics of the test workizzd 12 realiyr the
properties with those of the actual workload. The ease with which
these changes can be made have an impact on the cost of the evaluation
study, in terms of both time and expended resources.

Portability. A requirement in comparative evaluation studies is
that the same workload be executed on a number of different systems.

A test workload should be constructed so that it may be transported

between systems with a minimum of effort. Severe modifications to a
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test workload can lead to biased results such as those mentioned in the

section on reproducibility.

1.8 Dissertation Topic

The purpose of this research is to investigate the development
of test workloads. There does not appear to exist a unified, compre-
hensive methodology which would allow the systems analyst to produce
a concise representative workload for use in system evaluation studies,
although considerable work has been done in the characterization and
representation of workloads. This research is designed to aid in
the development of such a methodology.

Major goals of this research include:

(a) To investigate the characterization of a computer system
workload at a gross system level (daily/hourly characteristics) to
aid in the selection of interest periods in a performance evaluation
study.

(b) To examine the input job stream at a job or job step level
with the aim of characterizing the pattern of resource requests.

(c) To investigate the design of parameterized synthetic jobs,
which can be used in the construction of test workloads.

(d) To attempt to establish a step-by step procedure which can
be used by systems personnel in developing test workloads for use in
evaluation studies.

(e) To examine the procedure of (d) with an eventual aim of
automating as much of the procedure as appears feasible. Though full
automation of the procedure is not a goal of this research, the antici-

pated difficulties in this automation process will be considered.
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1.9 Dissertation Contents

This dissertation is organized according to the three phases
involved in the development of test workloads. These phases are the

(a) representation of the real workload, the

(b} analysis of the real workload, and the

(c) construction of the test workload.

A literature review of the current state of the art is contained
in Chapter II. The literature review surveys the attempts made in the
past few years to solve the problem of test workload construction
suitable for use in performance evaluation studies.

Chapter 111 addresses the problem of representing the real work-
load. Some considerations in selecting an appropriate subset of the
real workload, choosing a set of descriptors to use in representing
each workstep, and collecting data to obtain real workload values for
the descriptors are outlined.

Chapter IV contains a description of various statistical tech-
niques useful in analyzing the represented worksteps for similar
resource demand patterns, and summarizing the often voluminous amounts
of data in an accurate and succinct manner.

The actual construction of the test workload is described in
Chapter V. Some considerations and techniques for designing synthetic
jobs are outlined. Procedures for validating (verifying the accuracy)
the synthetic job stream are also given,

Chapter VI consists of a detailed case study illustrating many
of the techniques outlined in previous chapters. The test case is not

carried to conclusion (i.e. a complete ready-to-run benchmark) due to
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a need to limit the scope of the.research. The details necessary to
carry it to such a conclusion are outlined.

F The research is examined with the aim of producing a description
of a fully automated test workload generator in Chapter VII. The
results of the research are summarized, the more important points
originated in this research are delineated, and areas of future research

are suggested.

DT,
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CHAPTER 11
LITERATURE SURVEY

2.1 Introduction

The workload of a computer system consists of all individual jobs
and data that are processed by the system during a specified period of
time [86]. One of the principal problems facing a researcher conducting
a performance evaluation of a computer system is representing the
system workload in a form compatible with the evaluation techniques
employed. It was mentioned earlier that the test workload should be

representative of the actual workload inorder that valid performance

measures can be obtained; reproducible to allow replication of the
experiments and verification of questionable results; flexible to allow
easy modification; and portable to minimize the effort required to
transport the workload between systems. The criteria for a "good" test
workload are, to some degree, opposing, requiring compromise on the part
of the researcher.

Some of the factors influencing the development of a test workioad
are the selection of which jobs to include in the workload model, the
characterization of jobs in the real workload, and the type of test

workload to use. The approaches to this problem which have been taken

in recent years will be surveyed in this chapter.
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2.2 Selection of the Workload

In most evaluation studies it is not possible to execute the entire
job profile on each potential computer system to be evaluated. Some
workloads are non-recurrent in the sense that there is no readily dis-
cernible cyclic pattern of resource demands. Other workloads have an
extremely long repetition cycle (i.e. one week), hence inclusion of the
entire job profile for a given cycle would not be feasible. This
requires that a subset of the actual workload be used in constructing a
test workload.

Choosing which jobs are to be included in a test workload is not a
well-defined task. Hellerman and Conroy [42] 1ist three important cri-
teria in selecting jobs. These are

(a) those jobs which are run most frequently,

(b) those jobs which account for most of the system time and
resource use, and

(c) those jobs whose completion-time requirements are most
critical to the system's mission. The identification of these jobs may
be somewhat difficult.

Since the test workload will normally be constructed using only a
subset of the actual workload, one approach to the selection of jobs is
to use the techniques of statistical sampling [83]. Jobs are selected
at random from the real workload for use in constructing the test
workload. As with any sampling procedure, there is a risk of obtaining
a non-representative sample, and thus constructing a test workload which

does not resemble the actual workload.
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Another approach to the selection of the workload is to divide the
actual workload into classes based on job functions. Then a number of
jobs could be selected from each class based on their proportion in the
total mix [52]. This segregation of the actual workload into classes
could be done manually, or automated through clustering algorithms.

Still another approach to the selection of the workload is to pick
that period of activity which has the greatest influence on the problem
being studied. For example, if the load on the system is being studied,
an obvious workload to consider is the period of peak activity. It
should be apparent that if this approach is taken, the test workload will
not be representative of the entire workload. This may, however, not
be a serious constraint on the validity of the study [13].

Once a subset of the workload is selected for inclusion into the

workload model, data must be collected which reflect the characteris-

tics of the jobs included. System accounting logs, such as IBM's
System Management Facility [47], or trace facilities supplied with the

, system, such as IBM's Generalized Trace Facility [48], are ready sources
of such data. If these facilities are not available, data must be
collected with a monitor [75]. The first approach appears to be the
more popular [4,46,83,91] since the data is available with essentially
no required modification to the system. The second alternative has,

however, also been used [10].

2.3 Characterization of the Workload

Before the characterization of a real workload can be made, a basic

unit of work must be defined. In some evaluation studies, the unit of
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work may be a transaction, while in others it may be a job or job-step.
Evaluation studies involving a general purpose system may utilize both
transactions and jobs. Different types of workloads are generally
considered initially separate, however lend themselves to be combined
to form a composite workload. In the remainder of this section, the job
will be adopted as the basic unit of work. It should be recognized that
similar considerations apply for transactions in a time-sharing/
interactive environment.

Jobs or job steps in a batch processing environment can be described
by the type of processing required, or alternately by the demand they
place upon system resources [86]. The first approach is termed the

service demand representation, while the latter is termed the resource

demand representation. When the service demand approach is used, some

of the typical processing requirements might be compilation, sort-merge,
or file updates [86]. The distribution of the total jobs among the
different processing groups provides an indication of the nature of the
workload. Since this description does not depend on the particular type
of computer system (i.e. a program which requires compilation on one
system will generally require compilation on another), it can be referred

to as a system independent description. Independence of any given

system means that it can be used in comparative evaluations involving
heterogeneous systems. This characterization is highly desirable,

particularly in selective evaluations in which a potential customer is

attempting to decide which of two or more different vendor's equipment

ik




will best satisfy those needs. The service demand representation is
rarely feasible, since information on the processing requirements for
each individual job in the work stream is difficult, if not impossible,
to obtain.

An alternate characterization is obtained if the computer system
is viewed as a collection of resources upon which the users (workload)
place demands. Some of the resources common to many computer systems
with corresponding demands include the processor (CPU time), I/0 channels
and devices (number of I/0 activities), core memory (size of the region),
and unit record devices (number of cards read or punched, number of
lines printed) [86]. The demands for these resources can be considered
as the characteristic variables of the real workload processed by the
system. A job can be described by a set of these characteristics [1],
and since the system only recognizes a job by its pattern of resource
demands, two jobs with the same resource demands would be characterized

and treated identically [86]. It should be noted that the resource

demands of a given job will vary from one computer system to another.
Thus, this characterization is system dependent, and should be only used
in comparative evaluations involving homogeneous systems. Its main
usefulness would appear to be in system improvement studies involving a
single system.

Regardless of whether the resource demand or service demand
approach is used to characterize the workload, a job can be represented

. represents the magnitude
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of the demand for the iEﬂ resource or service. Using this representa-

tion, a number of different approaches have emerged for selecting jobs
and setting the levels of their demands for each of the resources or
services. Ferrari [32] describes five such approaches.

The first approach involves constructing the probability distribu-
tion of the demand levels in the real workload. By sampling these {
distributions, the appropriate demand for each resource or service can
be derived for each job included in the workload model. This method was
used vy Schwetman and Browne [81], and a simulation based on this
technique was described by Rosen [78]. The sampling technique used
would appear to affect the representativeness of a workload description

. produced by this method.

The second approach is to extract real jobs from the real workload
by sampling the workload. The resource/service demands for these
sampled jobs are used to characterize the jobs in the workload model.
This method has been used by Shope, et al. [83] and Wood and Forman [91].

! The third approach mentioned by Ferrari [32] is to partition the

real workload into classes, each characterized by similar combinations

of resource/service demand patterns. A suitable number of jobs can
then be selected from each class, and the resource demands for these
jobs used to characterize a job in the model. This approach has been

used by Joslin [51], Hunt, et al. [46], Agrawala, et al. [4] and

Mamrak and Amer [66].

The fourth general approach is to construct the joint probability

distribution of the parareters in the real workload (i.e. resource/
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service demands) and derive from this distribution the parameters of a
set of jobs with the same distribution. Sreenivasan and Kleinman [86]
proposed this method arnd applied it to the construction of a test worsi-
load for a batch-processing installation. The major drawback to this
method would appear to be that if a number of parameters are present,
the joint distribution becomes difficult to manage. The last technique
considers a job as a Markov process in which the states of a job are
specified in terms of the values or ranges of values of its resource/
service demands. The state-transition probability matrices for the real
workload are constructed and used to derive the sequences of values
for each job's parameters. This approach was investigated by Lasseter,
et al. [62] and a model using this approach was implemented by Lindsay
[63]. A recent work [70] investigated the modelling of a job in which
the states of the Markov model were the types of programs being executed
during each succeeding job-step.

Regardless of which of the approaches is used, the result should
be a workload model stated in parametric form. That is, the real
workload will be represented as a series of jobs, each of which has

a certain pattern of resource/service demands.

2.4 Types of Test Workloads

Test workloads can be classified as executable or non-executable
[32] depending upon whether they are intended for use in empirical
studies or analytical/simulation studies. Non-executable workloads are

of two general types. The first type is the probabilistic or distri-

butional workload. In this approach, the requests for resources or
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services are represented as probability distributions. The real distri-
bution of these demands is often approximated by such standard distribu-
tions as the geometric distribution, or the hyperexponential distribution
[88]. The closeness of this fit is obviously a factor in the degree of
representativeness achieved. This approach has been used by many
researchers [8]. Since the thrust of this research is not toward
analytical/simulation studies, no in-depth review of this representation
was made.

Alternately, the test workload may be script of system demands
based upon the observed requests of a previously executed workload.

This approach is called a trace, since it traces out the set of demands
of a previously executed workload. A trace may be so detailed as to
indicate each individual machine instruction executed, or be a series of
aggregate demands placed on combinations of system resources [22,67,90].
As pointed out by Svobodova [88], the representativeness of a system
trace can be affected by the artifact introduced in the monitoring
process. Again, since this approach jis of use in analytical/simulation
studies, no detailed review was undertaken.

The most obvious choice for a test workload in considering execut-
able workloads, is to use the actual workload (or a subset of this
workload) that the users submit. In this case, the test workload is
known as a benchmark. Benchmarks reflect demands the users make on the
<ystem, and these user demands must be translated into demands for
system resources. Natural workload models (benci-arks) have been

investigated and used in a number of studies [14,51,79,87]. Their
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use, however, has a number of drawbacks. These include

(a) the drive workload is not flexible since it is constructed
from jobs with fixed characteristics,

(b) Tlarge amounts of data on auxiliary storage may need to be
duplicated to enable the running of some real jobs and

(c) security or privacy considerations may prevent the use of
some jobs [86]. These and other considerations have led to the inves-
tigation of alternate forms of executable workloads.

An instruction mix is an artificially constructed job which is
composed of a precise mix of certain types of instructions. This type
of test job was one of the first artificial models suggested for use
in performance studies [32] and it is useful in comparing the relative
throughput of processors [88]. The most common mix is the Gibson
mix [35], although numerous others have been suggested [33,45]. There
are some disadvantages to using instruction mixes which tend to
severely restrict their applicability. These disadvantages include
that their use is restricted to comparing systems with similar instruc-
tion sets, and that they fail to account for input-output [42].

Another model which has been used to represent jobs in a test
workload is the standard job or kernel. These artificial jobs are
constructed to exhibit a particular behavior, and thus they can not
be easily modified. They are of use when a projection of the workload
is needed. They have also been used to compare the relative performance

of language translators. Many collections of standard jobs exist [44].

A type of artificially constructed executable workload which has
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received considerable attention in recent years is the synthetic job.
A synthetic job is a program which does not perform any "useful" com-
puting, but when executed results in demands for system resources
similar to the demands of the actual workload. Synthetic jobs are
generally written in a high level language with parameters which allow
for easy modification. These parameters normally allow the user to
specify the size of the program, amount of CPU time used, number and
types of files accessed, and the amount of I/0 performed. Thus,
similar to benchmarks, synthetic jobs represent the workload from the
user's point of view. The use of synthetic jobs overcomes many of the
disadvantages of benchmarks. Resource-oriented synthetic jobs are
typified by the single adjustable job proposed by Buchholz [18].

Wood and Forman [91], and Sreenivasan and Kleinman [86] have success-
fully used the Buchholz job for constructing synthetic test workloads.
Curnow and Wichmann [25] developed an Algol job to simulate many com-
putational procedures. Oliver et al. [76] developed a series of five
simple synthetic jobs and experimented with them in producing synthe-
tic workloads. Functionally oriented synthetic jobs have been described
by Joslin [51] and Lucas [65]. For interactive or time-sharing environ-
ments, the synthetic jobs are typically developed from scenarios that
specifv system-independent functional activities and include a desig-
nation of all actions, pauses and decisions made by the user. Work

in developing approximately representative test workloads for inter-
active systems has been done by Karush [53], Nolan and Strauss [74],

Wright and Burnette [92] and Crothers [24].
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2.5 Validation of Test Workloads

The results of the workload characterization process described in

section 2.3 should be a model of the workload. The test workload then
can be generated from this workload model through suitable represen-
tation of the jobs making up the model. Since the aim of constructing
a workload model is to obtain a representative test workload, the
validity of the workload model should be assessed. Agrawala et al. [4]
describe validation of workload models obtained through the clustering
approach. They suggest that the workload model should be constructed
from one set of data (the design set) and validated using a second set
of data (the test set). The method of hypothesis testing [43] is
suggested for use in such a validation process.

Ferrari [32] discusses validation of the test workload. The
procedure suggested involves the execution of the test workload on the
system being tested. The pattern of resource demands made by the test
workload is then compared to the pattern made by the real workload.
This validation procedure was followed by Schwetman and Browne [81]
and Kernighan and Hamilton [55]. Ferrari [32] suggests that secondary
performance indices, in addition to those primary indices which were
used in constructing the test workload, be included for use in valida-

tion.

2.6 Summary
Various approaches used to generate representative test workloads
have been surveyed in this chapter. It should be apparent from the

number of approaches surveyed that there is no widespread committment
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to any one single method. However, the approach which combires charac-

terization using clustering analysis and implementation using synthetic

; jobs appears to be gaining favor as the most promising approach.

The characterization of workloads and its impact on computer

performance studies is still not well understood. Those approaches
which were surveyed have not passed the test of time. That is, in
most cases, they are single examples of possibly useful procedures.
Until they are used by other researchers, they remain simply suggestions

on how one might proceed.
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CHAPTER III
SELECTING THE WORKLOAD

3.1 Introduction

The workload of most general purpose computing systems is dynamic
in the sense that it cannot be represented as a cyclic demand for re-
sources with a manageable repetition period. Furthermore, the needs of
a user community historically have tended to grow to match or exceed
the capacity of the computing system. Though the type of computing
done may not change dramatically, the number of users and their
frequency of use will steadily increase over the life of a system
[46].

The dynamic nature of the workload of a computer system basically
reflects the diversity of users. For example, in a large university
environment, jobs submitted to the computer system could include
instructional jobs, research jobs, administrative jobs (i.e. grade
reports), commercial jobs, and overhead jobs (i.e. billing, etc.). The
resource demand characteristics of these various classes of jobs may
be radically different. Instructional jobs are generally small jobs,
which individually use minimal resources, but due to the sheer number
of such jobs in the job mix, they become a significant part of the

workload. Research jobs, on the other hand, are much larger jobs,

hence individually account for a greater share of resource use than
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instructional jobs. Administrative and overhead jobs may be difficult

to categorize since they are run for many different reasons. It should
generally be apparent that they make liberal use of input-output (1/0)

facilities, since most billing/report functions require heavy access to
stored data files.

Not only are the computational requirements of the various classes
of jobs different, the frequency and timing of runs may be significantly
different. The frequency and timing of instructional jobs are influ-
enced by factors such as the beginning/end of the semester, when the
particular programming assignment is due, and even the schedule of
extra curricular activities. Research jobs are influenced by such
things as project deadlines. Administrative/overhead jobs may be
considered cyclic, since they are generally run at about the same time
each month/semester. The pattern of submissions of all classes,
except possibly overhead jobs can be affected by various operational
strategies such as reduced rates at particular times of the day.

The diverse nature of the workload (i.e. various types of jobs and dif-

ferent arrival patterns) hinders any characterization effort.

3.2 Constructing a Workload Model

A problem which has received a great deal of attention [3,4,5,
12,41,46,66] is the establishment of a model of a computer workload.
This is, in a sense, an attempt to characterize the users of a computer
system. Such a model is important from the viewpoint of management

[46] since it aids in planning. That is, if the characteristics of
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the user population are known, projections can be made, and orderly
expansion or replacement of the present system may be facilitated.

The approach taken to solve this problem has been statistical sampling.
The workload of the computer system is observed over some period of
time (i.e. a day, a month or a year). Random sampling of this collec-
tion of jobs is then performed to achieve a representative collection
of jobs. This reduced collection is then analyzed to discern under-
lying characteristics. These underlying characteristics are then
inferred to the population as a whole. There are a number of difficul-
ties associated with such an approach. Among these are:

(a) A significant part of the workload may be in the form of
a relatively small number of extremely large jobs. These may be
excluded from the model merely by chance.

(b) The workload of a computer system is generally not static in
time. That is, a workload model constructed using data from a parti-
cular period of time may not even resemble the workload present at
some other time, particularly with respect to the relative proportion
of various job classes represented in the model.

Even if a representative workload model can be constructed,
there are other difficulties which minimize the usefulness of such a
model to construct a test workload for use in a performance evaluation
study. Some of these difficulties are detailed in the next two

sections.

3.3 Environmental Impact on Resource Demands

The resource demand pattern for a given workstep (i.e. job,




transaction, or job step) is to some degree dependent upon its envir-
onment. There are the obvious differences in the timing of the
resource demands. The recorded magnitudes of the demands may also
vary significantly from one run to the next of the same program
depending on the system loading at the time. This difference in
resource usage (and hence in the amount charged) from one run to the
next of the same program may be baffling and sometimes annoying to
the user; it must also be considered when constructing test workloads
for performance evaluation studies. That is, a workstep which is
removed from its environment and included in a sample for an evalu-
ation study may exhibit a decidedly different resource demand pattern
in its new environment.

An example of a particular resource demand which is subject to
environmental variations is the amount of central processor (CPU)
time required to complete a task. In a recent study, Davies [26]
reported significant variance in the recorded CPU time for the same
compute-bound program run under differing degrees of system loading.
It was found that the recorded CPU time tended to increase as the
loading on the system got heavier. There are two sources cited for
this variance in CPU times. The first, referred to as the "true vari-
ation" is due to differences between runs in such things as cache per-
formance, paging behavior in virtual memory systems, and memory access
speed if processing is overlapped with "cycle-stealing". The second
cited source of variation is due to the non-repeatability of how the system

charges time to user processes, system overhead, and the idle state.
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The charging algorithm varies from system to system. IBM [47] recog- |
nizes the possibility of variations in CPU time between two runs of the
same program, and attributes it to such factors as channel program
retries, CPU architecture (core buffering), cycle stealing with inte-
grated channels, queue searching (such as task switching) and pending
interrupts. Although in many cases the variation of CPU time between i
two runs of the same program may be small, Davies [26] cites one
instance in which two runs of the same program produced r  -+~i{ CPUY
times in the ratio of 1:2.

A second resource demand which is subject to large environmental

variations is paging behavior. Paging activity is influenced by two
factors: program construction, and system environment. A program which
i exhibits a high degree of locality of reference [23,85] will generally

: not incur as much paging activity as one which does not have this ‘
property. This generally will have no impact on selecting an appropri-
ate workload since the structure of programs are not normally rodified.
It will, however, have an influence on the development of synthetic

E ) jobs which is considered later. The opportunity for environmental vari-

ations in the paging behavior of a program becomes clear when a parti-

cular paging strategy is considered. Consider, for example, the Least-

|

Recently-Used (LRU) paging algorithm [23]. This is a demand-paging

algorithm in that a page is only read into main memory when a reference

to it is made. As long as main memory is not full, no replacement of
pages is made. When physical memory is full, a strategy is employed
to decide which of a program's pages are to be "rolled-out" to free

space to read in the next referenced page. The LRU algorithm assumes
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locality, and replaces that page which has not been referenced for the
longest pericd of time. If and when that page is again referenced, it
must be read back into main memory. Thus if a program is executing

in an environment in which main memory is not fully used, it is likely
to incur fewer page faults than if it is executing in a heavily loaded
environment in which some of its pages have to be "rolled out" and

then "rolled back in" upon the next reference to them. This, of course,
can result in widely varying channel utilization rates as well as con-

tributing to variations in CPU time and 1/0 time.

3.4 Selection of an Appropriate Workload Subset

A performance evaluation study is normally conducted for a speci-
fic purpose. Studies performed on a single system could involve such
things as assessing the impact that various dispatching strategies have
on the average turnaround time; assessing the effect that a different
page replacement strategy would have on paging behavior; or assessing
the impact that adding another increment of physical memory will have
on the behavior of a virtual memory machine. Obviously, one would like
the test workload to exhibit certain properties to enhance the study.
For example, if the evaluation study involves assessing the relative
behavior of two page replacement rules, and a test workload is employed
which does not fully utilize physical memory, the results of the study
are likely to be less than satisfactory. One must, then, match the
test workload to the evaluation study to some degree.

Workload periods which are apt to be of interest in evaluation

studies are likely to be extreme periods. That is, the analyst wishes
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to examine the system when some feature of it is heavily loaded. This
fact, along with the failure to account for environmental variations,
would seem to severely limit the applicability of system workload
models constructed by statistical sampling to performance evaluation
studies. That is, it is highly unlikely that one could achieve a job
mix which would “"strain" the system in the desired manner through
random sampling.

An alternative to constructing the system workioad model is to
select a period of system activity which exhibits the desired charac-
teristics, and use that period for the evaluation study. Not only is
the desired characteristic present, but the environment has been pre-
served, which would minimize the problem of environmental variations.
There is some sacrifice made if this procedure is followed, however.
That is that since;there is no randomization in the assignment of work-
steps to the test wo'xload, one cannot expect that the workload is
representative of the entire real workload. Hence, inferences of system
behavior must be restricted to at most similar periods. This may not
be too small a price to pay when compared with the alternatives.

Detection of abnormal system activity which may be of interest in
performance evaluation studies is rather a trivial task. System
accounting logs normally contain summary data on system activity at a
level appropriatz for such detection. That is, information on the
number of jobs processed, memory utilization, CPU utilization, etc., on
a per hour or per day basis is recorded for management jnformation.
This data can be summarized and displayed in the form of a gross system

profile. Abnormal periods are usually apparent from such profiles.
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Once the appropriate period is selected, it can be examined in more
detail to insure that it does indeed possess the required characteris-
tics. Although they did not use it for this purpose, Bear and Reeves
[12] describe the system workload of the CDC CYBER 74 system at Wright-
Patterson AFB, Ohio at a level which would be appropriate for selection
of interest periods. A similar profile of the workload of the

Amdahl 470/V6 at Texas A&M University is illustrated in the case study

of Chapter VI.

3.5 Selecting Descriptors for the Worksteps

Once the period of interest has been selected, a set of descrip-
tors by which real jobs can be represented must be selected. If system
logs are used to obtain data on the real workload, this involves
deciding which of the recorded items are essential to characterize each
job's demand on the system. If a monitor is used to collect the data,
this determination must be made prior to the installation of the moni-
tor, to allow for the collection of appropriate data.

The number of descriptors used to characterize each job will, in
general, have a dramatic impact on the representativeness of the gener-
ated test workload. That is, if too few descriptors are used, the
analyst cannot hope to faithfully reproduce the system behavior. If too
many decriptors are included, on the other hand, the analysis of the
workload data is complicated.

Ideally, if the resource demand description of workload is ap-
plied, the workstep descriptors should completely specify the demands

placed upon the various system resources. Some of the resources upon
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which jobs place varying degrees of demand are

(a) central processing unit (CPU),
(b) 1/0 processors (channels),

(c) main memory, and

(d) peripheral devices.

The demand placed upon some of these resources are easier to characterize
than others. For example, the demand placed upon the CPU is reflected
in the elapsed time the CPU spends in the execution of the job. The demand
placed upon main memory can be measured by the size of the maximum
partition used by the job, the average partition size used, or if great-
er resolution is desired, the weighted sum of the various partition
sizes and the time each such partition is utilized.

The characterization of the demands placed upon 1/0 channels and
peripheral devices is somewhat more difficult. There are normally a
myriad of peripheral devices attached to a general purpose computer
system. It is highly unlikely that an evaluation study would require

‘ resolution to the extent of measuring the demands placed upon each
individual device. A reasonable measure would appear to be the amounts
of each particular type of I/0 activity (i.e. tape, disk, unit record)
done by the job. Most system accounting logs reflect a number of mea-
sures of I/0 activity. These include 1/0 time, as well as the number of
data transfers initiated on each channel. Though the number of data
transfers is not a direct measure of channel activity since varying
amounts of data can be transferred, it may be sufficient in many

evaluation studies. For those requiring more precision, the system

accounting data can be augmented with hardware monitor data reflecting
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the average channel activity per data transfer [91].

Previous workload characterization efforts reflect a multitude of
descriptor sets used to characterize the demands placed on system
resources by individual jobs. Sreenivasan and Kleinman [86] used only
two variables, CPU seconds and the total number of data transfers
initiated (EXCP count). A third variable, amount of core utilized, was
recognized as important but it was found that the vast majority of jobs

reguired similar amounts of memory. For this reason, it was not in-

cluded in the descriptor set. Hunt [46] used eight descriptors: cards
read, lines printed, CPU time, Peripheral Processor Unit (PPU) time,

central memory, tape drives charged, cost to user, and whether or not

FORTRAN was used. Agrawala, et al. [3,4,5] used eight features: CPU
time, executive request and control card charges, average number of
512-word core blocks used, number of job steps (programs) executed, wall
clock time, I/0 to FASTRAND or disk devices, 1/0 to tape, and I/0

to high-speed drum devices. Mamrak and Amer [66] summarized the work-
load using seven features: CPU time, disc EXCPs, tape EXCPs, cards

read, lines printed, DD cards, and core used in kilobytes, where an

EXCP reflects an I/0 request and a DD card (data and device specification
card) reflects a file accessed.

As can be seen from the above examples, there is no widespread
agreement as to what constitutes a valid feature set for use in charac-
“erizing the resource demands placed upon a computer system by a parti-
cular job. The problem appears to be somewhat dependent upon the

particular system in use and involves considerable intuition ¢ the
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part of the analyst performing the study. A different set of descrip-
tors, along with some justification for its use is described in the

case study in Chapter VI.

3.6 Collecting Data for Construction of the Test Workload

Once the particular subset of the real workload applicable to the
evaluation study is selected, and an appropriate feature set formulated,
the data reflecting the feature values for each workstep in the subset
must be gathered. It may be that data collection is done before the
determination of an appropriate feature set or vice versa. These two
phases are certainly complementary, since it will do no good to choose
a feature which cannot be measured and it is a waste of resources to
collect data on features which are not used in characterizing the work- i
load.

If monitors are used to collect resource demand data, there is

a need to be able to project when in the future the system workload

may exhibit similar characteristics to the period selected for the
study. That is, the period of interest for an evaluation study is
normally selected using historical data in the form of a system profile.
Unless the monitor was installed and data collected during that parti-
cular period, which is unlikely, a period in the future likely to
exhibit the same characteristics must be projected, so the monitor can
be "turned on" to collect the appropriate data. It then must be veri-

fied after the data is collected if in fact the projected period

exhibited the desired characteristics. This problem, as well as the

added cost of using a monitor, has caused most researchers attempting




to construct test workloads to use system accounting data.

The case for using system accounting data in characterizing the
resources used by a particular job is strong. First, the user is
charged according to the usage reflected in these logs. Thus, at least
from the point of manayement, the logs reflect the usage of critical
resources. Second, the data is collected already for other purposes.
The system analyst then obtains the data essentially without cost,
either “out-of-pocket" or in terms of additional overhead to the system.
Techniques for the collectionof data as well as the types of daca avail-
able from the system logs at Texas A&M University are considered in

the case study of Chapter VI.

3.7 Summary

The selection of an appropriate subset of the real workload to
use in a system performance evaluation study is one of the first
decisions the analyst attempting to construct a test workload must
consider. The subset selected must exhibit certain characteristics to
enhance the evaluation study being conducted. Previous approaches
based upon statistical sampling are not likely to yield the desired
workload, since they fail to account for environmcntal impacts on the
resource demands, and may exclude certain key parts of the workload.
An alternative is to construct a system profile using system accuunting
data, examine that profile to detect particular desired loading charac-
teristics, and use all or a portion of the actual workload during that

period in the study. The environment is thus preserved, and the analyst

is assured that the particular behavior of the system being studied
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will be induced by the workload.

Once the subset of the workload is selected, the demands placed
upon the various system resources by individual jobs must be quantified
through the selection of a set of descriptors. This choice involves
achieving a balance between the resolution of the precise resources
used and the computational complexity in the analysis phase. Collection
of data reflecting the real workload values for the descriptor set
selected is the last task associated with this initial phase. System
accounting logs provide a readily available source of data, and

normally provide adequate information on resource utilization.




CHAPTER 1V

ANALYZING THE WORKLOAD

4.1 Introduction

The techniques outlined in Chapter III will produce a subset of the
real workload which can be used to construct a test workload for use in
a performance evaluation study. This subset is represented as a number
of jobs, each described by some set of descriptors. The time of arrival
to the system, possibly the originating location if operating in a dis-
tributed environment, and the appropriate values of the descriptors
form a complete specification of each job's contribution to the over-
all workload of the system. A test workload can be generated by re-
placing each of the jobs on a one-to-one basis with synthetic jobs
which exhibit the same or similar resource demands. This, however, can
prove to be an extremely trying task if a large number of jobs are
included in the workload subset. It requires designing a separate
synthetic job to replace each real job in the subset. Previous studies
[3,4,5,30,46,66,86] have shown that the workloads of computer systems
tend to be composed of a relatively small number of job classes, with
resource demands similar within each class. If such classes are

present, the effort required in constructing the test workload will

be considerably diminished, since one synthetic job can generally be




used to represent all members within a class.

Thus, there is the need for analysis of the real workload subset
to detect and isolate those jobs which exhibit similar resource demand
characteristics. This chapter will outline a statistical clustering

methodology useful in such an analysis.

4.2 Scaling the Descriptor Values

In general, each job in the workload subset can be described as to
its resource demand characteristics by a set of descriptor variables
X], XZ’ cees Xn’ where the value of Xj, j=1, 2, ..., n, represents the
demand placed on the th-resource. The magnitude of the demands are
obviously expressed in different units. For example, CPU time may
be expressed in seconds, while memory utilization may be expressed in
kilobytes. There is no obvious comparison which can be made between

the various units, thus this unit dependence must be removed before

the analysis can proceed.
One approach to scaling the variables is to transform each of the

X. values by
J Xo - X .
B j Jj min

[]
Jox - X

J max j min

where X.

3 min is the minimum observed value of Xj in the workload

subset and Xj max is the maximum observed value of Xj in the work-

Toad subset. This transformation scales each of the varables to the

same range, namely from 0 to 1. The mean of the scaled variables is
f X

) - X, .
K = s M while the variance of the scaled variables is

X. - X. .
j max J min




43

V(X:) = - V(Xj) where ij is the mean and v(xj) is the

’ (Xj max xj min
variance of the original unscaled variables. This approach has been
used in at least one study [66] to remove the dependence upon units
from the workload data.

An alternate approach to scaling the variables was taken by
Agrawala, et al. [3,4,5]. They defined Xj“ to be the a-tile of the

observed values of Xj, and then linearly scaled using
10(X: - X
. O(Xl, )

J a _ ’
(Xj Xj min)

J min

This results in a feature space in which 100a% of the observed data
points lie in the interval from 0 to 10. For example, if o is chosen
as .98, 98% of the transformed values will lie in the interval from
0 to 10 [3,4,5]. The stated purpose behind such scaling is to
produce an essentially uniform feature space which is not distorted

by the presence of outliers. The mean of the jEﬂ descriptor variable

-t ]O(Xj - Xj min) ., .
under this scaling is Xj = X ) , while the variance is
X% - X, .
' 100 Jj j min
) = V(X.).
V(X;) PR (xJ)
i j min

A third approach to scaling is to standardize the variables. That
is, to scale each of the j variables to mean 0, variance 1. This is

accomplished by the relation

. X = X,
X, = d 3 . This transformation,

J /VTXET“

although it has not been applied (at least as can be determined) in




workload studies, is probably the most common transformation in statis-

tical studies.

There are a host of other transformations which could be applied
to workload data to remove the unit dependence and provide commensurable
ranges for the descriptor variables. There does not appear to be a
clear cut choice among the transformations since they are computa-
tionally similar and all accomplish the basic purpose. Standardization
provides some side benefits. That is, if this means of scaling is
used, the scaled data measures the variability in terms of standard
deviation units. Furthermore, since the original data is expressed in
widely different units, this means of scaling is preferred as a

prelude to a principal components analysis [2,72].

4.3 Accounting for Correlation Among Variables

As developed in the previous section, each job selected for use in
a performance evaluation study can be represented by a vector ; = (X],
XZ’ cens Xn), where the value of Xj represents the magnitude of the
demand for the jzh-resource. If there are m jobs in the selected sub-
set, the resource demand characteristics for the subset can be repre-

sented by an mxn matrix

X11%92- ¥ 1n ]
N X21%22+ - Xon
x =
| ot Ao |

where the element Xij represents the magnitude of the demand of the iEﬁ

job for the th resource.
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The variables (descriptors) selected to measure the magnitude of
the demands for resources for jobs in the selected subset will likely
be correlated to some degree. That is, there is a degree of linear
association among the variables. For example, it may be noted that
jobs which print many lines of output have relatively large values of
I/0 time, or that jobs which incur a high degree of paging issue an
inordinately large number of disc I/0 requests.

The effect of intercorrelation among descriptor variables on the

: resource demand pattern of the workload subset can easily be visual-
ized in two dimensions. Let X] and X2 be two descriptor variables,
which are correlated with a correlation coefficient r>0. If a scatter
plot of the standardized values of X] and X2 is constructed, an
elliptical pattern oriented along the line X2 = rX] will result, simi-

lar to that depicted in figure 4.1.

Fig. 4.1 The Eftect or Correlated Variables
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v

Intercorrelation among the descriptor variables will bias clust-

ering results obtained when jobs are clustered by similar resource

demands [16]. The effect is to provide a weighting for the common




characteristics reflected in the different variables. The severity of
this bias is difficult to assess in general, since it is somewhat prob-
lem dependent. That is, it is related to the degree of intercorrelation,
the distance metric used, and the weighting scheme supplied by the ana-
lyst.

It should be noted that high degrees of correlation do not, in
general, indicate causal relationships, since there are many instances
of totally unrelated phenomena which exhibit high correlation. However,
if two highly correlated variables are included in the descriptor set,
the biasing effect will be the same whether a causal relationship exists
or not. This bias may not be undesirable, but it should be considered
since it may help to explain seemingly contradictory results obtained
in the clustering phase.

The problem of intercorrelation among descriptor variables is
avoided if only uncorrelated variables are included in the descriptor
set. This, however, is not feasible in most cases.

Given a set of n variables which are intercorrelated, it is pos-
sible to construct a set of n or fewer composite variables which are
linear combinations of the original variables, are uncorrelated and
which account for the variance in the data [7]. This can be accomp-
lished by a method known as principal components [2,7,36,54,72,73,89].

Geometrically, the method of principal components involves a rota-
tion of axes. Each of the resource demand variables Xy X2, cens Xn
is represented by a coordinate axis from the origin 6 = (0, 0, ..., 0).
These n axes form an n-dimensional space, with the 1§ﬂ job represented

by a point whose coordinates are X] = Xi1, X2 = xi2’ cees Xn = Xin.
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In principal component analysis, the aim is to find a rotation of the
axes so that the variable Y] represented by the first of the new axes
has maximum variance. The variable Y2 represented by the second of the
new axes is uncorrelated with Y] and has maximum variance under this
restriction. Similarly, the variable Yk represented by the kEﬂ new
axis is uncorrelated with Yo Yos -ous Y, 4, and has maximum variance
under these restrictions [2]. The two variable case is illustrated

in the following figure, where the "dots" represent the various jobs

in the standardized resource demand descriptor space.

Fig. 4.2 Principal Components for n = 2.

= A ktaX,

Computationally, principal component analysis involves finding the
eigenvalues of the correlation matrix of f, choosing the eigenvectors
corresponding to the nonzero eigenvalues orthonormal to each other,
and postmultiplying the data matrix X by the matrix of eigenvectors.
The details of this procedure are given in Appendix A.

The matrix ¥ which is produced by principal component analysis

represents the scaled resource demand vectors of the workload subset
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with relation to the orthogonal principal axes. The orthogonality

insures that the new variables Y], Y2. ey Yr are uncorrelated, hence
clustering can proceed free of the biasing effect caused by the inter-
correlations among the original variables. An additional advantage in
possible reduction of the dimension of the feature space is gained by

using this procedure, as will be discussed in the next section.

4.4 Reducing the Dimension of the Feature Space

If n resource descriptor variables X], X2, cees Xn are used to
describe the demand placed on system resources, each job will be repre-
sented by a point in n-dimensional space. Prior to clustering jobs
based upon similarity of resource demands, it may be advantageous to
investigate the possibility of representing each job in a space of
fewer dimensions. That is, it may be possible to depict the salient
features of the resource demand patterns with k<n descriptor variables.
This is desirable from a computational standpoint, since the computa-
tional complexity of clustering is related to the number of descriptor
variables as well as the number of data units (jobs in the workload
subset).

The problem of reducing the dimension of the feature space has
been examined in at least two workload characterization studies [3,
661, with somewhat contradictory results. Both studies approached the
problem in much the same way. The scaled resource demand matrix was

first input to a clustering algorithm with a1l variables present to

achieve a "true" partition of the workload. A single resource descrip-

tor was then removed, and the data matrix reclustered. This was
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repeated, until all distinct sets of n-1 descriptors had been examined.
The process then was applied to descriptor sets of size n-2, then n-3,
and so on. The clustering performance for each set of descriptors was
measured by examining the number of intercluster "migrations” as
compared to the "true" partition. One study [66] reported promising
experimental results using this procedure, while the other [3] down-
played its usefulness. This seeming contradiction of results is
probably due to the differences in the two selected descriptor sets,
and the different degrees of intercorrelations among those features
reflected in the workload data. That is, if a descriptor variable
which is highly correlated with another variable is removed from the
descriptor set, its exclusion will likely cause fewer perturbations in
the “true" partition than if a variable which is essentially uncorre-
lated with other variables is excluded. This again follows from the
fact that correlated variables are, to some degree, reflecting the
same characteristic of the workload.

Even if the above feature reduction algorithm proves useful in
reducing the dimension of the feature space, it suffers from a fatal
flaw. As previously stated, the aim of reducing the dimension of the
feature space is to reduce the number of computations in the clustering
stage of analysis. Since there is no a priori indication as to the
relative worth of each descriptor in describing the “true" partition,
one must cluster using all of the descriptors, and then iteratively
reduce the dimension of the space. Thus, any computational advantage is

lost. This problem is overcome to a certain degree if clustering is
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applied to the principal component scores rather than the scaled vari-
ate scores.

Aside from the fact that its application produces uncorrelated
variables, principal component analysis also is useful due to its
maximum variance properties. The first principal component has the
largest variance of any linear combination of the variables represented
in the resource demand matrix; the second principal component has the
largest variance of any linear combination orthogonal to the first
principal component; the third principal component has the largest
variance of any linear combination orthogonal to the first two, etc.
This leads to a valuable property of principal components, namely that
the best least squares fit of the original space of n dimensions in a
space of k<n dimensions is achieved by using the first k principal
comporents [7]. Thus, although to achieve a perfect fit, all
of the principal components must be retained, if the analyst is satis-
fied with representing only a portion (say 95%) of the variability,

a significant reduction in the dimensionality of the problem may be
possible.

Information on the proportion of the total variability of the data
matrix explained by the first k<n principal components is available
without recourse to clustering. That is, it is a normal byproduct of
principal component analysis. This measure is
A] + Xz + ...t A

A]+A2+ ...+An

P =

s where A], XZ, .,‘,Xn are

the eigenvalues of the correlation matrix arranged in decreasing order.

NSl
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Thus, by including enough components so that this ratio is at least as
great as the minimum acceptable value, one can effectively reduce

the dimension of the descriptor space and hence reduce the computational
requirements in the clustering phase. It should be noted that this
reduction of dimension is merely a reduction in presentaticn [72].

That is, measures on each of the original variables muz¢ <3111 be

taken since each may appear in the expression for a compoaent variable.
The aim of reducing the computational requirements in later phases is

accomplished however.

4.5 (lustering Algorithms

Each job in the workload subset can be represented as an n-dimen-
sional resource demand vector X = (X1, XZ’ vees Xn) where the Xi are
the magnitude of the demand for the 1Eh resource. Following scaling
and principal component analysis, each job is represented as a k-dimen-
sional vector Y = (Y], Y2, cees Yk) in the principal components space.
The next, and final, step in the analysis process is to cluster the
jobs by similar resource demands, thus achieving a partition of the
workload subset.

Prior to application of a clustering algorithm, the analyst must
decide upon a measure of distance. That is, a measure must be selected
which gives an indication of how "close" two jobs are with respect to
their resource demands. A number of such distance measures are present
in the literature. Probably the most commonly applied is the Euclidean

measure given by
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where Yj is the standardized resource demand vector for the ij job

>
in the principal components space, and Yl is the similar vector for the

20 s5op.

Another consideration is the appropriate weight the analyst wishes
to apply to each of the descriptors. That is, the analyst may wish to
influence the clustering algorithm so that similarities in one dimension
carry greater weight than similarities in another dimension. The

th

weight Ni far the i= descriptor is normally incorporated into the

distance calculation as

D(Y ?)='§w(v Sy |7
g V) = B WYy - Yy :

i=1

Once the analyst has decided upon a distance measure and a weight-
ing scheme, there are two general clustering schemes which may be used:
hierarchical and non-hierarchical clustering [36].

The hierarchical scheme initially views the collection of m jobs
as m separate clusters of one member each. A similarity measure is
calculated between each pair of jobs, and those two jobs which are
most similar are joined to furm a cluster of two jobs. This cluster
is generally represented by the average (centroid) vector of the two.
This process is continued, with the two "closest" clusters joined at
each step until the space is viewed as a single cluster with m elements.
The analyst can halt the process at any time, thus achieving a parti-
tion with as many clusters as desired. This type of clustering scheme
is typified by the algorithm proposed by Johnson [50].

Non-hierarchical clustering requires achieving an initial partition

of the data set. There are a number of ways of achieving this initial
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partition [7]. These include taking the first k jobs as cluster
centroids, selecting some k jobs at random from the set as centroids,
and taking a partition achieved by hierarchical clustering as the
initial partition [7]. Once the initial partition is achieved, it

is refined by comparing all jobs with the cluster centroids, and group-
ing those jobs with the "closest" cluster. The major differences

in the various non-hierarchical schemes involve how and when the cluster
centroids are updated and how many passes are made through the data.
Mon-hierarchical clustering schemes are typified by the k-means approach
of MacQueen as described by Anderberg [7].

The decision as to which clustering algorithm to use is largely
problem dependent. Hierarchical schemes generally provide more insight
into the problem, since a wide range of partition sizes (number of
clusters) can be examined with a single application of the algorithm.
This. however, is counterbalanced by the fact that the non-hierarchical
algorithms are more economical to use computationally, since they do
not require the repeated calculation of similarity measures between
each pair of data units [7]. Since the size of the workload subset
js generally quite large (i.e. 750 jobs with 7 descriptor variables
in one study [66]; 1342 jobs with 11 descriptor variables in another
[3]) the insight gained through the use of hierarchical clustering 1s
Tikely not worth the additional computational overhead incurred.
Repeated application of a non-hierarchical clustering scheme such as
one of the "nearest-centroid" algorithms detailed in Anderberg [7] will

provide the needed insight at less cost in terms of computer time.

The bias caused by intercorrelated descriptor variables is
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exposed through principal components analysis, however it is not

eliminated. If an unweighted Euclidean distance measure is applied,
hyperspherical clusters will be formed. Since expressing the resource
demand vectors with respect to the principal components effects a
simple rotation of the axes, clustering results using the unweighted
Euclidean distance measure will be invariant under principal components
analysis. That is, the same partition of the workload subset will
result whether clustering with respect to the standardized variable
scores or with respect to the principal component scores. This

situation is illustrated for the two variable case in fiqure 4.3.

Fig. 4.3 Application of an Unweighted Euclidean Distance Measure
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The bias caused by the correlation between the variables X, and

1
X2 is apparent in figure 4.3 by the "band" of data points in the cluster.
Thus, the intracluster variance will be greater in the direction of
correlation (Y]) than in the direction orthogonal to it (Y2). A
weighting scheme is needed to equalize (or nearly so) the intracluster
variations in both directions.

Application of a weighting function causes the formation of hyper-
elliptic clusters [7], with the axes of the ellipsoids oriented along
the variable axes. If a weighting scheme could be devised so that
the intracluster variations in all directions are approximately the
same, the biasing effeci would essentially be neutralized.

If the data is subjected to principal components analysis, a
measure of the variation along each of the component axes is available.
That is, Var (Yj) = A5 Intuitively, a weighting function W, which
is related to Ay would appear desirable. Such a weighting scheme
would weight the component variables in proportion to the variability
that they "explain".

Suppose that the weighting function wi = 1/A1 is applied to the
component scores. This weighting function has precisely the same
effect as standardizing the principal components and then clustering

using an unweighted distance function. The effect of such a weighting

scheme is illustrated in figure 4.4 for the two variable case, where

it is assumed that x]>x2>1.
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Fig. 4.4 Effect of Improper Weighting

It can be seen from figure 4.4 that such a weighting scheme
merely reinforces the bias rather than neutralizing it. That is, the
intracluster variation in the direction of Yl is still greater than
that in the direction of Y2, even more so than if an unweighted
distance measure were used. This type weighting then is not likely
to improve the clustering results.

Suppose that a weighting function wi = A; were applied, where
Ai>1. This should result in the formation of elliptic clusters whose
major axes are orthogonal to those illustrated in figure 4.4. This
weighting scheme is illustrated in figure 4.5 for the two variable case.

This weighting is seen to have the proper effect. That is, the

intracluster variation in both directions are the same or nearly the

same.




Fig 4.5 Effect of Proper Weighting
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4.6 Summary

A statistical methodology has been proposed to aid in the analysis

and summarization of the workload subset selected for use in an evalu-
ation study. The major elements of this methodology are:

(a) Scaling of the data to commensurable ranges. A number of
schemes are available to accomplish this, however, the standardization
of all variables to mean 0, variance 1 offers some advantages.

(b) Applying principal components analysis to achieve uncorrelated
variables and allow selection of some k<n of the resource variables
which account for the major part of the variance in the data.

(c) Applying a suitable clustering algorithm to associate
"similar" jobs in the principal components space. A non-hierarchical

scheme using a weighted distance metric appears the most promising.
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An example of the application of this methodology to real workload

- data appears in the case study in Chapter VI.
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CHAPTER V

CONSTRUCTING THE TEST WORKLOAD

5.1 Introduction

The output of the analysis phase will be a summarized form of the
real workload subset. The jobs making up the subset are grouped accord-
ing to similar resource demands. Each “"cluster" of similar jobs is
represented by the cluster centroid and a cluster membership 1ist. Each
of these clusters can be further analyzed by constructing distribution
functions for each represented descriptor variable. This type of
analysis would yield a workload model which could be used in analytic/
simulation studies. Appropriate sampling techniques could be used to
extract a test workload from such a model. Empirical studies, on
the other hand, require that executable test workloads be constructed.
Thus, the construction of distribution functions and sampling techniques
will not yield a useful test workload for such studies.

A number of different types of executable test workloads were

surveyed in Chapter II. These included benchmarks, instruction mixes,

standard jobs, and synthetic jobs. Synthetic jobs offer advantages in

in the areas of flexibility and portability over instruction mixes and
standard jobs. They also avoid the security and privacy problems
associated with using real jobs (benchmarks). A test workload composed

of synthetic jobs, then, is likely to be the most useful form of an
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executable test workload.

One of the primary criteria applied in assessing the usefulness
of a test workload is how.accurately it reflects the resource demands of
the real workload which spawned it. A test workload which accurately
reflects the characteristics of the real workload is said to be

representative. Constructing a representative test workload using syn-

thetic jobs requires careful design of the jobs making up the mix. Some
of the techniques and procedures useful in designing synthetic jobs

will be surveyed in this chapter. Most of the techniques surveyed are
oriented toward test workloads constructed for a batch processing
installation. Similar considerations apply to transactions in a time-
sharing environment, however the general form of the model is different.
The actions which must be emulated in an interactive session include
user log-on, program creation, editing, program compilation, program
execution, and user log-off. A model embodying such actions can

more realistically be referred to as an interactive script [32] rather

than a synthetic job.

5.2 General Considerations in the Design of Synthetic Jobs

A synthetic job is a parametric program in which the demands placed
upon the various system resources are controlled by the values assumed
by various input variables (parameters) [32]. This relationship to
the actual resource utilization requires the programmer to approach
the design of synthetic jobs from a different viewpoint than normal
programming problems. Normal programming projects are usually under-

taken for a particular reason. That is, the user wants the computer
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to perform a particular task. The task to be performed is the over-
riding consideration in program development. There may be an attempt
to minimize the resources used in an effort to hold down the cost of the
project, but this is generally a secondary cons  cration. Synthetic
jobs, on the other hand, are independent of the task which is performed.
They are also independent of any input data or data files accessed by
the real programs they are designed to emulate. The sole consideration
in their design is that they use the same amount and types of resources
that their real counterparts use. Thus, a somewhat arbitrary "compute
loop" can be used to force the synthetic job to consume a particular
amount of CPU time. I/0 activity by real jobs can be emulated by
having the synthetic job access arbitrary files of the required type
(i.e. tape, disk, or card). These files can be "garbage files"
expressly constructed for this purpose, or any other file to which the
analyst has access. Thus, there is no unique synthetic job for each
situation. A multitude of logically different programs can be forced
to exhibit the same resource demand patterns with the proper choice
and setting of parameters.

The degree of complexity of a synthetic job is generally determined
by the level of detail used in characterizing the real workload. If
a limited resource descriptor set is used, a relatively simple synthe-
tic job will normally suffice. If, on the other hand, an expanded
resource descriptor set is used which reflects more minute aspects of
the real job's resource utilization, a more complex synthetic job will

generally be required. Ferrari [32] illustrated this point with two

examples.




The first example given by Ferrari [32] concerns construction of
a test workload for a batch processing installation. Jobs in the
workload were characterized by the descriptor pair (tcpu’ n; ). The
first descriptor gives the CPU time required by the job while the
second gives the number of I/0 operations initiated by the job. Since
the type of I/0 is not specified, it can be assumed to be simple "reads" i
from cards and "writes” to a printer (or any other mode for that matter)
in an arbitrary proportion. A synthetic job designed to emulate such
jobs can be composed of a simple loop. I/0 is performed a certain
proportion of the iterations through the loop, and some arbitrary
computation performed some other (or perhaps the same) proportion of
the times through the loop. The loop is executed until the required

number of I/0 operations are performed and the proper amount of CPU '

time is accrued. An example of such a synthetic job and a situation

in which this low level of detail is sufficient is given in the case
study in Chapter VI,

More complex synthetic jobs are typified by the one developed and
tested by Buchholz [18]. This job is designed to emulate a file
processing action. There are three parameters used, which specify the

number of master records read in, the number of detail (transaction)

records processed, and the number of times the "compute" loop is

executed. This job can be used to emulate the resource demands of

jobs whose resource descriptor set is somewhat expanded over the
earlier one described. An example of the use of such a synthetic job

is also given in the case study of Chapter VI.

\ .
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5.3 Parameterization of Synthetic Jobs

The parametérs of a synthetic job allow the individual system
resource demands to be easily modified. In general, greater flexibility
requires more parameters, while simplicity and economy dictate that
the number of such parameters be kept to a minimum. In the final
analysis, it is the level of detail used in characterizing the real
workload which determines the number of parameters to use. This re-
quired level of detail is in turn determined by the resolution necessary
in the evaluation study. For example, consider a test workload com-
posed of synthetic jobs where each synthetic job has parameters to
specify memory size and total CPU processing time. This workload
might be sufficient if the aim of the evaluation study is to determine
the effects of altering main memory on CPU utilization. It would
not provide the required resolution if the aim of the study is to deter-
mine the effects of differing amounts of I/0 processing on CPU and
I/0 overlap. In fact this latter study would require at least one
parameter to allow the ratio of CPU processing to I/0 processing to be
altered. It may also be necessary to include resource descriptor
variables which specify the duration and relative timing of I/0
requests. Thus, there is a three-way dependence among the performance
measures observed in the study, the descriptor variables used to
characterize jobs in the workload, and the synthetic job parameters
used to control the demands placed on various System resources.

More formally, suppose that a test workload wt is constructed for
use in an evaluation study in which the ¢ performance variables V], V2,

ces VI are to be observed. Suppose further that these performance
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variables are functions of m system resources described by the descrip-

tor variables rys r2, R 5

m? and that the values assumed by these r

descriptor variables are determined by n user parameters p , p ,
1 2

.» P_. The relations existing among the variables can be expressed

n

as

Vy = V](r], ces rm) =V, [r](p], cees pn), cees rm(p], cees pn)]

V'l(p‘l, R pn)
V, = VL(r], . rm) = V2 [r](p], eens pn), cens rm(p], cees pn)]

Volpys oes )

Vl = Vg(r], cees rm) =V, [r](p], cees pn), cees r%(p], ey pn)]
= Vg(p], cees pn).

The relations can be summarized in more compact vector notation as

V=V () =VI[F(»)]=V(p). Now, recognizing that the values

assumed by the parameters Pys =ees Py completely determine wt, the

composite relation V. = Vi(wt)’ i=1, ..., %, (or'v =V (Nt) )

results, where W, = W, (p], cees pn).

One problem which must be solved in constructing wt is determining
the relationship which exists between the resource descriptor
variables P1s oo T and the synthetic job parameters Pys o5 Ppe
The parameters Pys «-+s Py CAN be assumed independent of one another,
and in some cases they may bear a simple linear relationship to the

ry's. This relationship can be established by observing the ri's
for a few runs of the synthetic job with varying pi's, and applying
regression analysis [28]. The linear form of the relationships

ry = ri(p], ceey pn), i=1,2, ..., m, allows inversion to give rela-

tionships of the form pj =p

(r1, ooy r ), i=1,...,n. This assumes
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n 2 m and that the original system is non-singular. These latter
relations can be used to determine the appropriate parameter settings
to produce a given resource demand pattern.

Examples of the use of linear regression in establishing the
relationships which exist between the resource descriptor variables
P1s Tos wees T and the synthetic job parameters Pys Pps ---» P, are
given in the case study of Chapter VI. It should be noted that the
simple form of these relations does not suggest that similar simple
relationships exist between the performance variables V], V2, oy v

9

and the resource descriptor variables Fis oo woes Poo Establishing
this relationship must be accomplished during the evaluation study

itself.

5.4 Controlling the Demand for System Resources

A procedure for establishing the relationship between the resource
descriptor variables P1s Tos wees Yo and the synthetic job parameters
Pys Pps «.s P Was suggested in the previous section. This procedure
assumes that parameters which are likely to affect the job's demand
for a given resource have been established and incorporated into
the design of the synthetic job. Some of the ways in which the demands
placed upon system resources can be controlled are surveyed in this
section.

One of the major system resources is main memory. The amount of
main memory used by a given job is obviously related to the size of the

program as well as the space needed for system routines supporting

the job's execution. A job's main memory requirements can thus be

;
§
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altered by modifying the size of arrays or by including routines

which may never be called. A number of systems (i.e. IBM) enforce

a policy known as “preallocation of resources" to preclude deadlock
problems [23]. The maximum amount of main memory likely to be used

by the job must be requested in advance of its initiation. If this
requested amount is not sufficient to allow program execution, the

job is terminated. The size of the region in main memory aliocated to
a particular program, if such a strategy is employed, can be either
increased or decreased by altering the region request fieli in the

Job control statements.

Control of the amount of CPU processing time used by a program is
possible by including a "compute-loop" control parameter. An arbitrary
seauence of computations is performed iteratively until the desired
CPU time is accrued. The required number of iterations through the
loop can be controlled precisely through access to system timers [32].
It can alternately be established in advance through calibration
experiments. The amount of processing time accrued by a particular job
is related to factors cther than simply the number of computations per-
formed. The number of I/0 activities initiated, for example, can have
a significant impact on CPU time used.

Control of the I/0 processing requirements of a job is more
difficult than either main memory or CPU time. There are a multitude
of different types of I/0. It may be necessary to control each of
them, depending upon the resolution needed in the study. Unit record
I/0 (i.e. cards read, lines printed, and cards punched) is the easiest

to control. The number of cards read is obviously a direct function
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of the size of the program. It can be varied, within certain limits,
by including or excluding comment and data cards. The number of lines
printed (or cards punched) can be controlled through inclusion of a
"print" (or "punch") loop. This loop is executed a sufficient num-
ber of times to produce the desired output. Tape and disk (or drum)
I/0 is concrolled by creating files which are accessed using the
proper mode. Records can be read, modified, and written under the
control of a file processing loop. There is a potential problem in
accurately reflecting the real workload's processing behavior. This
results from the fact that in addition to controlling the number of
I/0 activities initiated, the size of the data block transferred

each time must also be specified. Data on the real workload's resource
demands is generally not available at the required level of detail
from system accounting logs. It can be obtained by using a monitor,
as was mentioned in Chapter III.

Another type of I/0 activity which must be controlled in virtual
memory systems is paging I/0. In a demand paging environment, blocks
of data are transferred from auxiliary storage into main memory as
required. If main memovy is full, some "pages" may have to be recopied
back to auxiliary storage to make room for the next "page" copied
into main memory. Paging activity can be controlled to a certain
extent by careful program development. Techniques useful in improving
the locality of a program and thus decreasing its expected page fault
rate are discussed by Spirn [85]. Paging activity is also highly
environment dependent. Thus any significant control over paging

activity will Tikely have to be exerted during the calibration/




validation phase when the entire test workload is available.

Direct control can be exerted over many of the system resources
through inclusion of loop control parameters and proper job control
statements. An example of the use of parameters to control the various

system resources is included in the case study of Chapter VI.

5.5 The Design of Calibration Experiments

It is necessary once a synthetic job has been designed, to
establish the relationship between the parameters of the synthetic
job and the resource descriptor variables used to characterize jobs
in the real workload. Such a process can be termed "calibrating” the
synthetic job. The procedure proposed in Section 5.5 requires that
the synthetic job be executed on the system for various parameter
settings. The corresponding values of the descriptor variables are
recordad for each run, and regression analysis used to establish the
desired retationship. There are a number of unanswered questions
associated with this procedure. These include 'iow many runs of the
synthetic program are necessary to establish an accurate relationship,
what parameter settings should be used for each run, and how to
account for the acknowledged environmental variations (see Chapter
I11) in the resource demands from one run to the next. The use of
statistical experimental design techniques is proposed in this section
to assist in answering these questions.

The magnitude of the demands placed on system resources by a
given job can vary from one run to the next. Some of the demands most
susceptible to these environmental differences are CPU processing

time, 1/0 processing time, and data transfer over the channels handling




paging activity. This variation in resource demands can have a signi-

ficant effect on relationships established through regression analysis.
Indiscriminant running of the synthetic job will yield data in which

it is impossible to separate the effect on the response variable due
to this "chance" variation from that caused by the setting of various
parameter levels.

Most of the parameters used in controlling the magnitude of the
demands placed upon various system resources by a synthetic job can
assume a wide range of values. For example, the number of times a
“compute" loop is executed is constrained only to be a non-negative
integer. Similar restrictions (or lack thereof) apply to other para-
meters. Failure to use a wide enough range of values for these
paraneters will yield a predictor equation which cannot be used in
some cases. This s because it is almost never feasible to extrapolate
using a regression equation [28].

Related to the setting of the parameter levels for each run of the
synthetic job is the required number of runs. The synthetic job
cculd be run a large number of times (say 100) with the parameters set
at the same values. Thisobviously would yield a highly reliable
relationship for that particular combination of settings. The validity
of the relationship for some other combination of parameter settings
would be highly suspect.

Problems similar to those outlined above are commonly encountered
in other data analysis situations. A branch of statistics known as
experimental design [43] has evolved to aid in the resolution of these

problems. The methodology outlined for designing factorial experiments
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[43] appears applicable to this problem.

A factorial experiment is one in which all levels of a given factor
are combined with all levels of every other factor of the experiment
[43]. Each of the synthetic job parameters to be varied can be consid-

ered as a factor in the calibration experiment. Levels for each factor

can be established which are likely to cover the required range of
resource demands. Each unique combination of factor levels can be '
thought of as a "treatment" to be applied. Treatments are assigned
at random to each run of the job.

The use of statistical design techniques provides a number of
advantages in calibration experiments. They include:

(a) The randomization of the treatment to run assignment minimizes

the effect of chance environmental variations ih resource demands.

(b) For a given number of factors and levels per factor, one

can precisely calculate the number of runs necessary for a complete
replication of the experiment. For example, if five factors are
present, and each can assume two levels, 2° = 32 runs are required.
The analyst can reduce the number of runs by using fractional replica-
tions. This involves confounding some effects.

(c) The significance of the effects on the resource demands by
the various parameters can be tested through an analysis of variance.
Interaction effects can also be tested, although in some cases it is
difficult to interpret such effects.

(d) Confidence limits can be established for the obtained

regression coefficients.




[t costs no more in most cases to conduct a carefully designed
experiment than it does a poorly designed one. The use of statistical
experimental design techniques can have a significant impact in the
calibration phase. An application of these techniques is given in

the case study of Chapter VI.

5.6 Validating the Test Workload

The calibration experiments discussed in the previous section
can be used to establish predictor equations relating the synthetic
Jjoh parameters to the resource descriptor variables. A synthetic job
mix can then be constructed by including sufficient copies of each
of the synthetic jobs with the appropriate parameter settings. It
is necessary to execute this synthetic mix on the system being studied
and to determine what degree of representativeness has been achieved.
This process can be termed validation.

A number of authors [4,32,49,86] have emphasized the importance
of validating test workloads. The general consensus seems to be that
a test workload which has not been validated should not be used. The
particular subset of the real workload which is used as a model in the
design of a test workload is selected because it exhibits some charac-
teristics pertinent to the evaluation study (i... heavy loading, high
paging rate, etc.). If the test workload does not exhibit the same
characteristics, the evaluation study can be severely hampered.

If the test workload does not accurately reflect the resource
demands of the real workload subset, it is likely due to

(a) errors in recording the resource demands, either because the

recording process was not accurate or because the resource demand
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pattern was distorted (perhaps due to artifacts introduced by the moni-

toring process itself),

(b) errors introduced when the actual workload demands are
reduced to probability distributions or clusters, or

(c) errors in computing the synthetic job parameters.

Errors of the first and second type are common to nearly all
methods of generating test workloads. They can be precluded only
by exercising extreme care in those stages of the construction process.
Errors of the third type are unique to test workloads generated using
synthetic jobs. Careful design of the calibration experiments should
minimize the possibility of an error of this type occurring.

An obvious means of verifying the accuracy of the synthetic job
parameters is to execute the test workload, record the demands placed
upon the system resources, and then compare the resulting probability
distributions of demand clusters with those produced by the real work-
load. A number of statistical tests (i.e. Chi-Square, Kolmogorov-
Smirnov) are available for testing "goodness of fit". Errors of the
first and second type mentioned above, however, could go undetected
using this process. The monitoring process will likely introduce the
same bias when the test worklecad is executed as it did during proces-
sing of the actual workload subset. The same analysis package will
likely be used to summarize both the resource demands of the actual
workload and those of the test workload. Thus, the same errors are
apt to occur in both analyses.

The validation phase of test workload construction is probably

the least understood phase. There are a number of reasons for this.
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Many studies never progress this far, since it is the last phase of

the process (although the calibration phase may be reentered if a

non-representative test workload is produced). Secondly, to avoid
distorting the demand characteristics of the test workload, it must
be executed in isolation from other jobs on the system. This requires

a dedicated system during that period of time, which is sometimes

inconvenient and expensive.

5.7 Summary !

A test workload can be constructed using synthetic jobs. The
parameters to incorporate into the design of the synthetic jobs are
determined by the resource descriptor variables used to characterize
the real workload. These descriptor variables are in turn determined
by the performance variables required by the evaluation study. Regres-

sion analysis can be used to establish the relationships between the

synthetic job parameters and the resource descriptor variables.
Statistical experimental design procedures can be applied to assist

in the design of these calibration experiments. Following the design
and calibration of the synthetic jobs, a synthetic mix can be con-
structed by including the appropriate number of copies of each synthe-
tic job with the proper parameter settings. This test workload must

be executed on the system, and its resource demands compared with those

of the real workload. This latter process is termed validation.




CHAPTER VI

CASE STUDY

6.1 Introduction

A methodology for constructing a test workload suitable for use
in a performance evaluation study has been developed in Chapters III,
IV, and V. This chapter illustrates this methodology with a case
study of the primary computing system at Texas A&M University.

A brief description of the present system configuration begins
the study, followed by a description of the system workload in terms

of gross workload characteristics. Succeeding sections illustrate

the application of techniques to

(a) express the selected workload subset as a resource demand
matrix;

(b) transform this demand matrix through suitable scaling and
principal component analysis;

(c) summarize the workload subset using a clustering strategy;

(d) design synthetic jobs to replace the real jobs reflected in
the selected workload subset.

This study is not directed toward measuring any particular aspect

of the system's behavior. Rather, its aim is to demonstrate a proce-

dure by which a drive workload can be constructed. For this reason,




there is a degree of arbitrariness in some aspects of the study, parti-
cularly in the workload subset which was selected. The selected

subset does not exhibit any particularly outstanding feature; it was
selected more or less at random. In an actual performance evaluation
study, considerable care must be taken in selecting a workload sub-

set which provides an appropriate environment for the study.

6.2 System Description

The Texas A&M University Computer Network is a centralized
network with the Amdahl 470/V6 at its hub. Aecess through remote job
entry (RJE) is possible from a number of locations throughout Texas,
including Amarillo, Austin, Brenham, Galveston, Prairie View, Stephen-
ville, Temple, Tyler, Texarkana, and Waco. In addition, four remote
computing centers are dispersed about the main campus of Texas A&M.
The Data Processing Center (DPC), which operates the network, acts as
a centralized data processing facility, providing data processing
services in support of the academic, research, and administrativ~
functions of the university.

The Amdahl 470/V6, which was installed in late 1975, is the
central computer. It is supplemented by various mini/micro computers
which assist in data reduction and provide an opportunity for "hands-
on" instruction. The 470/V6 is presently equipped with six megabytes
of main memory, a sixteen kilobyte cache memory, and has a cycle speed

of 32.5 nanoseconds. Sixteen data channels (0-F) are provided. These

1/0 processors are currently assigned as follows:




Channel 0 - Unit Record 1/0

Channel 1 - 8 CALCOMP 3330 Mod I compatible disk drives
Channel 2 - Unit Record 1/0
Channel 3 - 12 CALCOMP 3330 Mod II compatible disk drives

Channel

3

Channel 4 - COMTEN 3670 communications control module
5 - 12 CALCOMP 3340 compatible tape drives
6

Channel - Alternate to channel 5

Channel 7 - Alternate to channel 3

Channel 8 - 80 IBM 3270 CRT terminals (IMS)

Channel 9 - Not utilijzed

Channel A - HASP pseudo devices (disk)

Channel B - 8 CALCOMP 3330 Mod I compatible disk drives
Channel C - Not utilized

Channel D - Not utilized

Channel E - Not utilized

Channel F - Not utilized

The system is presently operating under SVS Release 1.7, in a
HASP 4.0 environment. SVS swaps virtual memory between the disk and
real memory in 4096 byte segments (pages). TSO, the Time Sharing
Option of IBM operating systems, provides a time sharing environment
in which most functions available to the batch programmer are made
available to the terminal user. Other software subsystems available
include

(a) APL-SV - A time-sharing system provided by IBM which allows

many terminal users concurrent access to the 470.

(b) IMS/VS - An 1BM program product providing data base and
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data communication facilities.

(c) SYSTEM 2000 - A general purpose data base management system
developed by MRI Systems Corporation.

(d) MARK IV - A file management system developed by Informatics,
Inc.

(e

PANAVALET - A program management and security system developed
by Pansophics System, Inc.

(f) WYLBUR/370 - A text editing system developed at Stanford
University.

A wide variety of language translators are provided. Those

supported by the DPC include

(a) ASSEMBLER G - Assembly language,

(b) ASSEMBLER X - Assembly language,

(c) ASSIST - Fast student assembler,

(d) ANS COBOL (version 3) - Business oriented language,

(e) FORTRAN H (extended) - Scientifically oriented language,

f) 0S/VS COBOL - Business oriented language,

(

(g) PL/C - Fast PL/I compiler,

(h) PL/I Optimizing Compiler - General programming language,
(i) WATBOL - Fast COBOL compiler and

(j) WATFIV - Fast FORTRAN compiler.

In addition, language translators for ALGOL, SNOBOL, LISP, PASCAL,
and RPG are available, but are not supported by the DPC. A large

number of application packages are available, including GPSS, CSMP TIII,

SSP, SAS 76, SPSS, and IMSL.
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6.3 Workload Description

The workload of the Amdahl 470/V6 is composed of five general
categories of worksteps, where in this case, "workstep" refers to an
increment of the workload. This increment could be a job in a batch
environment, or a session in a timesharing environment. These cate-
gories are:

(a) Teaching - student worksteps, and other worksteps run in
direct support of teaching,

(b) Research - worksteps related to research projects,

(c) Administrative - worksteps run to support the everyday
operation of the university,

(d) Commercial - worksteps run by non-university users,

(e) Overhead - billing programs and other worksteps run to
support the operation of the DPC.

Although the proportion of the workload in each of these cate-
gories varies, during October/November 1978, the breakdown was Teach-
ing - 58%, Research - 18%, Administrative - 6%, and Commercial/QOver-
head - 18%. It should be noted that these are proportions of the
total number of worksteps processed rather than of total resource
utilization.

For this study, the workload for the period January 1, 1978 to
November 30, 1978 was examined. There were a total of 912,327 work-
steps processed during this period, which accounted for 2944.66 hours
of chargeable CPU time. The following relative frequency histograms
show the distribution of the worksteps/ CPU time over the eleven month

period.
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The structure of the histogram depicting the proportion of work-
steps processed closely follows the academic terms. The spring semes-
ter began in late January and continued through mid May; the summer
term ran from early June to mid August; and the fall term began in
late August and ran into December. The histogram depicting the propor-
tion of CPU time shows that the period of maximum utilization of the
processor actually occurred during May and August, a time of relatively
low student usage. Thiswas caused by a heavy administrative workload
during those two periods. Grade reports are processed in May account-
ing for that "hump"; both grade reports and normal end-of-the-fiscal-
year processing account for the August "hump".

For this study, it was decided to examine a period which exhibited
a balance in the types of worksteps processed. The period selected
was a two week period, September 20 - October 3. This period should
exhibit the desired balance, since it begins approximately one fourth
of the way into the fall semester. Thus, the distortion caused by
end-of-semester administrative processing is avoided. Furthermore, it
is far enough into the semester so that student/research activity is
relatively heavy.

The workload during the period of interest displayed a strong
weekly trend. This is caused largely by the work week and operating
hours of the various remote processing centers. There was a total of
46,730 worksteps processed during the two week period, which resulted
in 127.03 hours of chargeable CPU time. The following relative fre-

quency histograms depict the distribution throughout the week.

P - . a



Fig. 6.3 Relative Frequency Histogram for Worksteps Processed - Weekly
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The seeming contradictions in the above histograms are caused by
student jobs. A "happy hour" period is provided from 7:30 - 9:00 P.M.
on Sundays; 12:30 - 1:00 P.M. and 8:30 -~ 10:00 P.M. on Mondays through
Thursdays; and 12:30 - 1:00 P.M. on Fridays during which jobs using the

student compilers are run without charge. Thus, the job counts during
these periods are abnormally high. CPU utilization is not affected

to the same degree, since these jobs are characteristically very |
minimal in terms of processing requirements.

§ Using this profile as a guide, a two hour period was selected

as the workload subset for use in the remainder of the study. In an
effort to keep the scope of the study reasonable, it was decided to
restrict it to the batch portion of the system workload. It should be

understood that to produce a realistic test workload, the interactive

portion of the workload would also have to be considered. This analy-
sis should parallel that of the batch workload, with the two types of
workloads merged at the end to provide a composite test workload.

The two hour period form 9:00 - 11:00 A.M. on September 20, 1978

e

was selected, again to yield a balanced workload. This period avoids
the influx of student jobs caused by "happy hour", and is contained

within the normal workweek so that administrative/overhead jobs are

represented. There were 338 jobs processed during this period, with

170 of them compiled using the in-core student compilers (Autobatch

jobs) and 168 of them using the standard 0S translators (Batch jobs).

These two portions of the batch workload were analyzed separately due

i to the severe restriction in resource utilization placed upon the

Autobatch jobs.

- ———y—
o - il M [ o GV . S P WY
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6.4 Analysis of Autobatch Data

There are a total of five Autobatch language translators provided
for use with small jobs which require limited I/0 support. In addition,
a subset of the Statistical Analysis System (SAS76) is provided in-core.
The resource demand patterns for jobs executed on these student-oriented
translators are very similar. Input data is through the standard input
file (card); output is either in printed or punched form; a common
region size (256 kilobytes) is used; and access to external files is
prohibited. Furthermore, restrictions are placed on the maximum CPU
time utilized and maximum output produced.

Due to the similarities in the resource demand characteristics of
Autobatch jobs, a limited resource descriptor set is adequate to repre-
sent their contribution to the system workload. The descriptor set
selected includes CPU time (.01 sec), number of cards read, number of
lines printed, and number of cards punched. Data was collected on these
four variables during the selected period. Of the 170 Autobatch jobs
processed, none punched cards. Thus, this descriptor was eliminated
from the set. This resulted in a three variable set denoted hereafter
as {X],XZ,X3}, where X, = number of cards read, X, = number of lines
printed, and X3 = CPU time in .01 second increments.

The 170 jobs were spread fairly uniformly throughout the period.
The interarrival time distribution is depicted in figure 6.5. This
distribution is not crucial to the analysis of this section. It must

be considered, however, when constructing the final test workload.




Fig. 6.5 Interarrival Distribution - Autobatch
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The resource demands of the Autobatch jobs are summarized in table 1

}; 6.1. i

Table 6.1 Resource Demand Characteristics - Autobatch

X Xy Xq
Min L 9 1
3 Max 873 1328 229
. Mean 129.4 162.7 18.4
2 Std Dev 152.4 203.9 31.8

The variables were first standardized to mean 0, variance 1. Then,

the intercorrelations among the variables were examined. These correla-

tions are summarized in table 6.2,
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Table 6.2 Correlation Matrix - Autobatch i
% Y X3 !

X, 1.000 0.696 0.547 ;
X 0.696 1.000 0.758 :
X 0.547 0.758 1.000 ;

The standardized variables XI’XZ’ and X3 were then subjected to
principal component analysis to transform them to the uncorrelated
& variables Y].Yz, and Y3. This analysis produced the following linear

relations for the composite variables.

Y; = 0.55052X, + 0.60964X2 + 0.57032X,4
Y2 = 0.76719X] + 0.10011X2 + 0.63356X3
Y3 = 0.32915X] + 0.78633X2 + 0.52282X3

The eigenvalues corresponding to the three principal components,
the portion of the variability in the data explained by each principal
component, and the cumulative portion are displayed in the following

table.

Table 6.3 Principal Components for Autobatch Data

Y Y Y

{ 1 2 3
Eigenvalues | 2.337483 0.457655 0.204861
Portion 0.779 0.153 0.068
Cum Portion | 0.779 0.932 1.000

A table similar to table 6.3 is useful in deciding how many of the




components to retain for the clustering stage. Due to the limited
number of variables involved, and the fact that the least significant
component (Y3) accounts for nearly 7% of the variability, no attempt
was made to reduce the dimensionality in this case.

It is tempting when using principal component analysis to try
to attach a physical meaning to the components. Since in this study,
principal components are isolated to examine the bias caused by the
intercorrelations and give insight into possible reduction of the dimen-
sion of the feature space, no attempt was made to attach such a meaning.
It is, however, interesting to note the intercorrelations among the
original standardized variables and the component variables. These

intercorrelations are shown in table 6.4.

Table 6.4 Intercorrelations Among Variables - Autobatch

Y Y, Y3

0.84169 0.51901 0.14898
0.93206 -0.06772 -0.35591
0.87195 -0.42860 0.23664

Once the component scores were calculated, they were input to the
clustering algorithm detailed in Appendix B. The algorithm was run
jteratively for various number of clusters, and the sum of the squared
deviations about the cluster means examined to determine an appropriate
number of clusters. A plot of this measure is depicted in figure 6.6.
There is an obvious compromise to be made between obtaining very "tight"

clusters and forming the minimum number of clusters necessary. For this




data, a reasonable compromise appeared to be five clusters.

i Fig. 6.6 Plot of Cluster "Tightness" - Autobatch
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The five clusters formed exhibited markedly different resource
N . demand patterns. To depict the difference, the approximate fractile
rankings of the cluster centroids were plotted on Kiviat ¢raphs [59.

69,71]. These graphs, scaled from 0 at the center to 1 on the peri-

meter, are shown in the following figures.




Fig. 6.7 Kiviat Graph for Cluster 1 - Autobatch
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Fig. 6.8 Kiviat Graph for Cluster 2 - Autobatch
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Fig. 6.11 Kiviat Graph for Cluster 5 - Autobatch

Y

Examination of the Kiviat graphs reveals some similarity of
structure. For example, both clusters 4 and 5 are severely imbalanced
in favor of components Y2 and Y3. Clusters 1 and 3, on the other hand,
are imbalanced in favor of components Y] and Y2. Similarity of the Kiviat
graphs may tempt the analyst to consolidate the two similar clusters
into one composite cluster. This may be feasible in some cases, how-
ever it should be done with care. The Kiviat graphs display approxi-
mate fractile rankings, and, depending upon the variance in the
components, a slight difference in the fractile ranking can involve
a significant difference in the magnitude of the components.

The interpretation of the clusters in terms of principal components

is difficult, since no physical significance was attached to the

e e—p—
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components. For this reason, examination of the clusters in the origi-
nal space is necessary before consolidation of clusters is considered.
The cluster characteristics in terms of the original unscaled variables

are depicted in table 6.5.

Table 6.5 Cluster Compositions - Autobatch

Cluster
1 2 3 4 5

Number 28 27 16 66 33

X1(Mean) 130.36 214.85 491.00 29.71 82.64
x1(std dev) 30.47 109.23 182.60 13.58 22.36
X2(Mean) 165.64 265.74 664.13 41.74 74.79
X2(Std dev) 59.67 111.74 253.68 16.04 17.09
X3(Mean) 13.57 35.22 86.56 3.36 5.91
_X3(Std dev) 9.48 15.23 60.43 1.38 3.54

Examination of table 6.5 reveals that there are indeed significant
differences in the magnitude of the demands between the "similar"

clusters. No consolidation was attempted for this reason.

6.5 Analysis of Batch Jobs

The restrictions placed upon the allowable resource demands for
Autobatch jobs are not applied to jobs using the standard 0S translators
(Batch jobs). This necessitates an expanded resource descriptor set to
adequately characterize Batch jobs, since the range of the resource
demands is much broader for these jobs, both in scope and magnitude.

A set of 12 descriptor variables was selected to represent the
demands placed on the system by Batch jobs. These are

(a) Xy = number of job steps executed,

(b) X,

total number of devices used by the job,
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(¢) Xy = region size requested in kilobytes,
(d) X4 = number of cards read,

(e) Xg = number of lines printed,

(f) x6 = number of cards punched,

(g) Xy = number of pages read in,

(h) Xg = number of pages read out,

(1) X9 = CPU time in .01 second increments,
(3) X107 I/0 time in .01 second increments,
(h) X
(1) x

13 EXCP count issued to tape devices, and
125 EXCP count isued to disk devices (excluding HASP
pseudo devices). These 12 variables represent the demands placed upon
the major system resources. They also allow discrimination between
different types of jobs, such as those which do tape I/0 versus disk
I/0, or single step versus multistep jobs. An expanded feature set
could be used if desired, since reduction of the dimensionality of the
feature space is a part of the proposed methodology.

There were a total of 168 Batch jobs processed during the selected
period. The interarrival distribution of these jobs is similar to
that of the Autobatch jobs as seen in figure 6.12.

The 168 Batch jobs exhibited a widely varying pattern of resource
demands as illustrated in table 6.6.

As with the Autobatch data, the variables were first standardized,

the correlations examined, and principal component analysis performed.

These stages of the analysis are summarized in tables 6.7 and 6.8.
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Fig. 6.12 Interarrival Distribution - Batch
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Table 6.6 Resource Demand Characteristics - Batch

Min Max Mean Std Dev
X] 1 6 1.56 1.03
X2 2 61 12.18 10.68
X3 64 512 159.24 80.76
X4 5 4619 257.87 655. 33
X5 0 24979 1872.69 4771.51
X6 0 6548 76.11 674.57
X7 0 440 31.73 49,16
X8 0 384 12.43 34.58
X9 2 12731 336.39 1193.59
X]0 0 29998 812.40 2948.55
X]] 0 33028 354.67 2612. 1M
X]2 0 47677 1009.78 4556.96
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Examination of table 6.8 shows that 96% of the total variance in
the data can be explained by retaining only 8 of the 12 components.
These 8 most significant components were selected to be input to the
clustering algorithm. The intercorrelations among these 8 most signi-

ficant components and the 12 original variables is shown in table 6.9.

Table 6.9 Intercorrelations Among Variables - Batch

Y

1 2 3 4 5 6 7 8
Xy 0.40 0.47 0.54 -0.16 0.07 0.18 -0.37 0.36
X5 0.63 0.41 0.39 -0.01 0.09 0.17 -0.18 -0.46
X3 0.38 0.40 0.43 -0.08 -0.23 0.13 0.65 0.07
Xa 0.01 0.17 0.22 0.61 0.70 -0.22 0.13 0.05
Xe 0.22 0.15 -0.53 0.41 0.00 0.69 0.00 0.05
Xg -0.09 -0.13 -0.19 -0.66 0.65 0.24 0.15 -0.01
X5 0.89 0.25 -9.18 -0.07 0.02 -0.13 -0.04 -0.09
Xg 0.83 0.25 -0.36 -0.06 0.02 -0.20 -0.05 0.16
Xq 0.80 -0.51 0.06 0.09 0.02 0.07 0.1 0.06
Xl0 0.69 -0.63 0.17 0.02 -0.01 0.01 -0.02 -0.01
1 0.61 -0.70 0.25 0.04 0.01 0.07 -0.03 0.02
Xi2 0.71 0.29 -0.49 -0.07 -0.01 -0.26 0.07 0.00

To determine a reasonable number of clusters to form, a procedure
similar to that used with the Autobatch data was followed. The plot
of the total summed deviations about the cluster means is shown in
figure 6.13.

Based upon the plot of figure 6.13, a reasonable compromise
appeared to be to form 10 clusters. The approximate fractile rankings

of the cluster centroids are depicted in the following Kiviat graphs.
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Fig. 6.13 Plot of Cluster "Tightness" - Batch
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Fig. 6.14 Kiviat Graph for C]usteQ 1 - Batch
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Fig. 6.16 Kiviat Graph for Cluster 3 - Batch
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Fig. 6.18 Kiviat Graph for ClusteQ 5 - Batch
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Fig. 6.20 Kiviat Graph for Cluster 7 - Batch
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Fig. 6.22 Kiviat Graph for ClusteQ]Q - Batch
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Fig. 6.23 Kiviat Graph for Cluster 10 - Batch
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The Kiviat graphs show a distinct structure for each cluster, thus |
it is unlikely that consolidation of any of the clusters would be bene-

ficial. The cluster compositions in terms of the original variables

T o ey

are shown in table 6.10.

6.6 Comparison of Clustering Results

The intercorrelation among the resource descriptor variables biases ;
the results of the clustering phase of analysis. Various weighting
schemes were proposed in vhapter IV to neutralize this bias. In this {
section, the clusters achieved when these weighting schemes were applied
to the Batch workisad data will be compared. Similar experiments were
cenducted using the futobatch data with comparable results. Toward
the end of the section, the clustering results achieved by retaining
the eight most significant components will be compared to those which

! were achieved by retaining all 12 of the components, using the same
weighting scheme in both cases.
i The Batch workload data was standardized and then subjected to
principal components analysis. The component scores (all components
retained) were then input to the clustering algorithm detailed in 3
Appendix B with three different weighting schemes. The first run used
. . an unweighted Euclidean distance metric. The second two runs used a
weighted Euclidean distance metric with wi = 1/Ai in one case and
W, = A5 in the other case.
It is difficult to compare the partitions achieved using different

weighting schemes since the cluster memberships can change quite

drastically. Since the aim of applying the weighting function was to
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more or less equalize the intracluster variation in each dimension,
one way to compare the results obtained is to examine the variance
(or standard deviation) for each variable within each cluster. It
is likely not possible nor desirable to achieve true equality. This
is because of the wide disparity in the variances of the principal

component variables when all data units are considered (i.e. Var (Y])

i

4.22; Var (Y]2) = 0.06). It should be apparent, however, that more
homogeneous clusters are formed if the intracluster variations are
small and nearly equal.

Since the clustering algorithm was applied to the principal
component scores, any comparison made is most meaningful in the princi-
pal components space. The intracluster standard deviations for each
principal component variable within each cluster are shown in tables

6.11, 6.12, and 6.13.

Table 6.11 Cluster Standard Deviations - Ni

i
—

1 2 3 4 5 6 7 8 9 10
Y .46 1.05 8.74 2.95 3.67 1.01 0.00 2.41 .55 .84
Y5 .20 75 2.43 2.09 1.74 .45 0.00 1.02 .24 .49
Y3 .24 52 3.88 1.24 1.03 .52 0.00 1.05 .13 .40
Ya .04 1.00 .32 .37 94 17 0.00 .48 .07 .28
Yo 10 97 .10 59 69 28 0.00 .39 .10 A7
Ye 10 42 .95 19 73 22 0.00 .42 .09 .47
Y; 35 30 .16 66 79 69 0.00 .79 .14 12
Yg 14 22 1.14 28 28 35 0.00 .54 .16 .26
Yq 06 10 .39 39 10 17 0.00 .32 .07 1
Y30 .03 .20 .15 .15 .06 .07 0.00 .06 .02 .04
I .02 .03 .15 .24 .08 .03 0.00 .05 .01 .04
Y12 .03 .04 .09 .11 .03 .09 0.00 .06 .03 .03




—
N

0.00 .93 .38 16 .35 .47 .24
0.00 .90 .39 A3 .23 .30 .31
0.00 .48 .21 .25 .62 .51 .29
0.00 .34 .01 .43 .35 1.02 .28
0.00 .28 .37 29 .08 .42 .18
0.00 .1 17 .13 .10 .33 .08
0.00 .07 13 02 1.1 .09 .03
0.00 .03 .04 .03 .07 .22 .02
0.00 .04 .09 05 .06 .04 .02
Table 6.13 Cluster Standard Deviations - A,
3 5 7
Y] .21 42 2. 1.01 0.00 .84 0.00 .50 .59
Y2 .20 .46 2. 1.02 0.00 .89 0.00 .49 .39
Y3 .22 .52 2. .90 0.00 .41 0.00 .69 .46
Y4 .07 1.33 . .36 0.00 .52 0.00 1.27 .14
Y5 06 1.31 1. .24 0.00 .58 0.00 1.12 .35
Y6 .04 .47 . 31 0.00 .35 0.00 .45 .14
Y7 .29 .40 .71 0.00 .40 0.00 .99 .93
Y8 A3 .12 .42 0.00 .29 0.00 .45 .46
Y9 .04 .05 13 0.00 .13 0.00 .15 .11
Y]0 .01 .08 .15 0.00 .26 0.00 .06 .07
Y]] .01 .02 .10 0.00 .04 0.00 .05 .02
Y .02 .03 .12 0.00 .05 0.00 .05 .06

Close examination of tables 6.11, 6.12, and 6.13 tends to
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confirm the conclusions of Chapter IV, particularly if viewed in terms
of the extreme values of the cluster standard deviations. Table 6.11,
based upon the unweighted distance metric, has a maximum value of 8.74,
and a total of 16 values greater than 1. Table 6.12, based upon the
weighted distance metric with wi = I/Ai, has a maximum value of 13.60,
and a total of 20 values greater than 1. Table 6.13, based upon the
weighted distance metric with wi = Ao has a maximum value of 2.74, and
a total of 9 values greater than 1. Thus, the weighting scheme with
wi = I/Ai actually performs worse than the unweighted scheme, while
significant improvement is noted when wi = Ai is used.

Of particular note with this data is the manner in which the three
schemes handled outlier jobs. There were two jobs which were much
larger in terms of resource requirements than any others in the subset.
Both jobs performed an excessive amount of I/0, with one accessing tape
devices and the other disk devices. Both the unweighted version and the ]
weighted version with wi = 1/xi grouped at least one of these outlier
Jjobs with other data units, thus providing a very inhomogeneous cluster. ﬂ
Only the weighted scheme with Ni =\ “correctly"classified these two
jobs into two single member clusters.

Comparison of the results obtained with a weighted distance metric
(wi = Ai) when 8 and 12 of the principal components are retained indi-

cate very little change. Of the 10 clusters obtained with 12 compo-

nents, 5 of them remain intact when only 8 components are retained
(including the two "outlier" clusters mentioned above). There are

but minor changes in 4 of the 5 remaining clusters. The lone cluster

vhich changed drastically was a small cluster (9 data units) in which
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even minor alterations in cluster membership can have a dramatic effect
on cluster characteristics. In all, 15 of the 168 data units migrated
(i.e. changed clusters) when the four least significant components

were dropped. This performance is somewhat related to the weighting
scheme used. Similar experiments were conducted using the unweighted
distance metric and the weighted distance metric (wi = ]/Ai). The
effect of dropping the four least significant components was more

severe with these two schemes.

6.7 Construction of Synthetic Jobs

The construction of synthetic jobs to replace the real jobs in the
selected workload subset is the next logical step following clustering.
A separate synthetic job is generally required to represent each cluster.

There may be exceptions to this however. Two clusters may be similar

enough that a single synthetic job can be used to represent the jobs

in the composite cluster formed by merging the two. A single cluster,

on the other hand, may be too "loose" to allow adequate representation

of its members with a single synthetic job. Such a cluster must be

split into subclusters, each of which is represented by a separate

synthetic job. After synthetic jobs are constructed for each cluster/

subcluster, the synthetic mix can be formed by including the appropri-

ate number of copies of each job and appending the arrival time to each.
Synthetic jobs were constructed for one Autobatch cluster and

one Batch cluster to illustrate the design technigue. The Autobatch

cluster selected was cluster 4 (see table 6.5 (p.91)), while the Batch

cluster selected was cluster 6 (sce table 6.10 (p.103)).
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Synthetic jobs designed to represent the Autobatch jobs can be

very simple jobs due to the limited resource descriptor set. Three

resource demands must be controlled: x] = number of cards read, X2 z

number of lines printed, and X3 = CPU time used (.01 sec). The number
of cards read is exactly determined by the number of source/comment
- staterents in the program and the number of JCL/data cards. This

number can be varied within certain T1imits for a given synthetic job

il

by either including or excluding data/comment cards. The number of
lines printed can also be exactly controlled by including a print loop
which is executed the desired number of times. CPU time used is con-
trolled by executing a compute loop a certain number of times. The
amount of CPU time is aiso related to the number of lines printed,

hence this dependence must be accounted for. The synthetic job designed i

for Autobatch cluster 4 is described in detail in Appendix D.

The synthetic job for Autobatch cluster 4 has two parameters which
may be varied to induce various resource demand patterns. ‘Th.-se parzau-
eters are NRLIN = the number of lines to be printed and NITER = the
number of times the compute loop is to be executed. The size of the
program (number of cards read) was held constant throughout. These two
parameters were used as "treatments" in the experimental design used.
Three "levels" for each "treatment" were established to cover the
range of resource demands exhibited by the members of Autobatch cluster
4. This results in nine unique treatment/level combinations. A com-
pletely randomized factorial design (32) was used to establish the
parameter settings for the nine required runs of the job. The parameter

setting for each run are shown in table 6.14.
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Table 6.14 Parameter Settings - Autobatch

Run
1 2 3 4 5 6 7 8 9
NRLIN{ 50 50 50 150 150 0 0 150 0

NITER{ 50 5000 2500 50 2500 5000 50 5000 2500

The nine programs were run on the system and data collected which
reflected the resource demands of each program. This data is summarized

] in table 6.15.

Table 6.15 Resource Demands - Synthetic Autobatch Job

1 Run
1 2 3 4 5 6 7 8 9
X] 33 33 33 33 33 33 33 33 33
] Xo 88 88 88 188 188 38 39 188 38
] X3 5 77 41 a 43 74 3 80 38

The significance of the effect of varying NITER and NRLIN on X3
was then tested. Both "treatments" were found to be highly significant
(e = .0001). The model used assumed no interaction between the param-
eters. The amount of CPU time used (X3) was regressed on NITER and
- NRLIN, while the number of lines printed (XZ) was regressed on NRLIN,

2 The following predictor equations were obtained through this regression:
X, = 38.238 + 0.998 NRLIN
X3 = 2.399 + 0.037 NRLIN + 0.014 NITER.

e i e e e e ———
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The fit achieved by both regression equations was extremely good. The

. value of the multiple correlationcoefficient (proportionof the variabil-
ity explained) was 0.999978 for the equation relating X2 to NRLIN, and
0.999679 for the equation relating X3 to NRLIN and NITER.

Synthetic jobs designed to represent Batch jobs must be considera-
bly more complex than those for Autobatch jobs due to the expanded
resource descriptor set. The descriptor set used for the Batch jobs
; includes 12 variables. A number of these can be exactly controlled |
through Job Control Language (JCL) statements cr the inclusion /ex-
clusion of data/comment cards. Others must be controlled through

parameters.

The synthetic job designed for Batch cluster 6 (described in

Appendix D) has four parameters which can be varied to induce different

resource demand patterns. They are NITER = the number of times the
compute loop is executed, NOUT = the number of output lines produced,
NTAP = the number of records read from a tape file, and NDIS = the
number of records read from a disk file. Those resource demands which
are not affected by varying these parameters were held constant through-
out the experiment.

Two levels for each parameter were selected. A completely
randomized factorial design (2%) was used to establish the parameter
settings for the various runs of the program. This design requires 16
runs to form one replication of the experiment. This was considered
excessive due to the cost associated with each run. It was decided to
use a fractional replication for this reason. A one half fractional

replication requires only eight runs, but still allows testing of the

— — -
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main treatment effects. The effect of interaction among parameters was
assumed negligible just as with the Autobatch experiment. Using the
method illustrated in Hicks [43], the "treatment” combinations were
divided into two blocks, with the four-way interaction effect con-
founded with the block effect. A coin flip was used to decide which

of the blocks to use in the experiment. The parameter settings for the

eight required runs of the job are T1isted in table 6.16.

Table 6.16 Parameter Settings - Batch

Run
] 2 3 4 5 6 7 8
NITER| 1000 0 1000 0 0 0 1000 1000
NOUT 0 0 1000 0 1000 1000 0 1000
NTAP 0 1000 1000 0 0 1000 1000 0
NDIS 0 0 0 1000 0 1000 1000 1000

The synthetic jobs were run on the system, and data collected
reflecting the resource demands. This data is shown in table 6.17.
The values for all 12 resource descriptors are shown; those which are
not affected by the four parameters appear as constants. No attempt
was made to control paging behavior as this is largely environment
dependent.

Table 6.17 shows that five of the 12 resource descriptors are
affected by varying the four parameters. These are X5 (number of lines
printed), X9 (CPU time used in .01 sec increments), X]0 (1/0 time used

in .01 sec increments), X1 (EXCP count to tape devices), and X12 (EXCP

count to disk devices). The significance of the effect of the parameters
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Table 6.17 Resource Demands - Synthetic Batch Job

| 2 3 g Run ¢ 6 7 8
X, 1 1 1 1 1 1 1 1
X) 14 14 4 VRV o114 14
X2 128 128 128 128 128 128 128 128
X3 200 240 240 280 240 240 240 240
s 354 351 1349 351 1349 1349 351 1349
X2 0 0 0 0 0 0 0 0
X5 0 0 0 0 0 0 0 0
X2 0 0 0 0 0 0 0 0
XS 282 109 332 1M 191 201 247 329
X3 188 213 212 233 187 256 257 232
K 1 10 10 1 1 0 10 1
X 132 132 132 217 132 27 271 217

on the descriptor variables was tested. Using a level of significance
a = .05, the effect on X9 was significant for NITER and NOUT; the
effect on X]0 was significant for NOUT, NTAP, and NDIS; the effect on
X5 was significant for NOUT; the effect on X]] was significant for
NTAP; and the effect on X]2 was significant for NDIS.

The descriptor variables were then regressed on those parameters
which were identified as having a statistically significant effect.
The resulting regression equations with the value of the multiple

correlation coefficient indicated in parentheses are

Xg = 351.75 + 0.99725NOUT (R2 = 0.999997),
Xg = 110.00 + 0.1345NITER + 0.0860NOUT (R2 = 0.998648),
Xi0= 188.25 - 0.00INOUT + 0.025NTAP + 0.0445NDIS (RZ = 0.999903),

Xy1= 1.00 + 0.009NTAP (R2

1.000000), and
X]2= 132.00 + 0.085NDIS (R2 = 1.000000).

The problem with inverting the above equations to yield predictor
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equations for the parameter settings is that there is one equation too
many (i.e. 5 equations in 4 unknowns). The equation for X]0 however
is seen to be redundant, since 1/0 time is uniquely determined by the
quantity and type of 1/0 performed. Inverting the remaining relations
yields the following predictor equations

NOUT = 1.00276X5 - 352.72,

NITER = 7.4349X9 - 0.64HX5 - 592.27,

NTAP = 1]].1111X]] - 111.11, and
NDIS = 11.7647X]2 - 1552.95.
6.8 Summary

A statistical methodology proposed for use in constructing test
workloads was developed in Chapters III, IV, and V. The major elements
of this methodology are illustrated in this chapter with a detailed
case study of the workload processed by the Amdahl 470/V6 at Texas
A&M University.

The first task in constructing a test workload is determining
a subset of the real workload to use as a model. The appropriate
workload subset is related to the particular evaluation study being
performed. An overall workload profile can be constructed, and an
applicable subset selected by viewing the characteristics displayed in
the profile. This study was not directed toward any particular evalu-
ation effort, hence the choice of the subset was somewhat arbitrary.

The selected workload subset was found to be composed of two

basic types of jobs, those using the student compilers (Autobatch)

and those using the standard 0S translators (Batch). A limited

= e s e ey Pf
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resource descriptor set is adequate for characterizing the resource
demands of the Autobatch jobs while an expanded set is required for
Batch jobs. The two types of jobs were analyzed separately for this
reason.

The resource demand matrix was first scaled so that each descriptor
variable had a mean of 0 and a variance of 1. This scaled matrix was
then subjected to principal component analysis, to transform the
demand vectors to a space of uncorrelated composite variables. Those
component variables necessary to explain 95% of the total variability
were retained. This resulted in the retention of all three of the
component variables for the Autobatch data. Only eight of the 12
component variables for the Batch data were retained, however, reducing
the dimensionality of the problem by one third.

The principal component scores were input to a non-hierarchical

clustering algorithm using a weighted Euclidean distance metric.

Various weighting schemes were tried, with the "best" results obtained
by weighting each component variable by the proportion of the variabil- W
ity it explains. The numbers of clusters to form in each case was
determined somewhat subjectively by iteratively running the algorithm
for various numbers of clusters and examining the sum of the squared

deviations about the cluster centroids. The results of the clustering

L A
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algorithm were illustrated using Kiviat graphs which displayed the

approximate fractile ranking of the cluster centroids for each cluster.
Kiviat graphs were not originally designed for this purpose. They are

] useful, however, in presenting the multidimensional nature of workload

data.
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Two clusters, one for Autobatch and one for Batch, were selected
as models to use in the design of synthetic jobs. Following the design
of the two jobs, a completely randomized factorial design was used to
guide the collection of data and to test the significance of the effects
that the synthetic job parameters have on the various resource demands.
Regression analysis was performed to yield predictor equations for the

resource demands as functions of the synthetic job parameters.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Review of the Proposed Methodology

The construction of a representative test workload is an integral
part of any computer performance evaluation study. A methodology
which is proposed for use in constructing test workloads has emerged
from this research. The major elements of this methodology are

(a) selecting the workload subset by constructing an overall

workload profile and then choosing a period which exhibits character-
istics pertinent to the evaluation study,

(b) choosing a set of descriptor variables which is detailed

enough to represent the demand placed upon the major system resources,
but is not so detailed as to complicate later stages of analysis,

(c) collecting data reflecting the values of the descriptor

variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor

variable has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource

demand matrix and retaining only those components needed to explain

the major part of the variability in the data,
(f) clustering the transformed resource demand vectors in the

principal components space using a non-hierarchical clustering

- t . oS T TR T
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algorithm with a weighted Euclidean distance measure,

(9) designing synthetic jobs for each of the isolated clusters

using regression analysis to obtain predictor equations for the param-
eter settings,

(h) forming a synthetic job mix by combining a sufficient number

of copies of the various synthetic jobs with appropriate parameter
settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it

on the system being studied, comparing its characteristics with those
of the real workload subset, and adjusting the parameter settings as

necessary.

7.2 Automatic Generation of Test Workloads

The construction of test workloads is a time consuming, tedious
and error prone procedure. Using the proposed methodology, the major
portion of this task can be automated. Automation will release the
analyst from this tedious chore. It will also provide benefits in the
areas of flexibility, ease of modification, and reproducibility. This
section will describe the design of an automatic benchmark generator
based upon the proposed methodology.

It is not 1likely that the first three elements of the proposed
methodology can be automated to any degree. Considerable insight is
required to select an appropriate workload subset and to determine the
set of descriptor variables which will adequately represent a given
workstep's true demand on the system. Furthermore, the criteria

used to judge a workload subset appiicable to a given study changes

dmca s,
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from one study to the next. One study may require an I/0 bound
workload; another study may require a compute bound workload; and a
third study may require a balanced workload. It is a straightforward
task to collect the appropriate data, once the desired workload subset
is selected and the descriptor variables determined. In the remainder
of this section, then, it will be assumed that the real workload is
presented to the generator in the form of a resource demand matrix.
The arrival time of the request, possibly its originating location if
operating in a distributed environment, and a flag indicating the type
of workstep (i.e. transaction, job) are appended to each resource
demand vector.

The characterization phase of the analysis combining scaling,
principal components analysis, and clustering can be easily automated.
It is envisioned that the various classes of workload requests (i.e.
batch, time-sharing, and real-time) would be first segregated. Analysis
would proceed separately on the different classes. Some decisions
would still need to be made by the analyst. These include how many of
the principal components to retain and how many clusters to form if
non-hierarchical clustering is used. The first decision on retention
of principal components can be built into the generator. That is, it
may be decided to retain sufficient components to explain a particular
proportion of the variability in all cases. The second decision is
not so readily made, since the "optimal" number of clusters to form is
largely data dependent. There is the need for a clustering algorithm
which does not require this decision.

The next two elements of the methodology are also amenable to
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automation. It would require the construction of a library of general
purpose synthetic jobs. This library must contain synthetic versions
of batch processing as well as transaction oriented jobs. The appro-
priate synthetic job would be selected from this library by first
determining the type of job (i.e. batch or interactive) needed by
examining the flag appended to the resource demand vector. The required
resource demands would then be compared against those demands which
could be produced by the various library jobs. The appropriate param-
eter settings could then be calculated using previously developed
predictor equations. Following the selection of library jobs and
the determination of the required parameter settings, the synthetic mix
could be generated by considering the time and location of origin for
each workstep.

Calibration/validation of the produced synthetic job mix is
necessary to assure its representativeness. This requires that the

synthetic mix be executed on the system, and data collected on the

resources used. The resource utilization pattern for the synthetic

mix is compared to that of the original workload subset. Parameters
1 are adjusted, and the process repeated until the desired agreement is
reached. The details of this procedure are not clear, however it

appears feasible.

An automatic benchmark generator then would be composed of three
basic modules: a characterization module, a benchmark generator module
and a calibration/validation module. These modules are depicted in

figure 7.1.
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i Fig. 7.1 Automatic Benchmark Generator
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7.3 Major Points Originated by the Research

This study differs substantially from previous workload character-
ization studies. These differences are in the following areas:

(a) This study proposes a complete statistical methodology which
can be used to construct test workloads. Previous studies were gen-
erally restricted to a portion of the problem.

(b) This study separated the workload characterization problem
for management oriented studies from that of constructing test work-
loads. Workload subsets selected at random from a computer workload
are not Tikely to be applicable to the test workload construction
problem.

(c) This study examined the intercorrelations among the descrip-
tor variables and their effects on the clustering phase of the analysis.
Previous studies have largely ignored this problem.

(d) Principal components analysis was used to reduce the
dimensionality of the descriptor space. This is believed to be the
first application of this technique to the workload problem, although
one report [80] suggested its possible utility. Previous attempts
at reducing the dimensionality of the descriptor space have been
inconclusive and self-defeating.

(e) wvarious clustering algorithms and weighting schemes were
compqred in this research as they apply to the workload problem.
Previous studies seemed to rely upon a given scheme with 1ittle moti-
vation for its use.

(f) A general purpose synthetic job for use with batch workloads

was developed. By varying the parameter settings, this job can perform
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as an 1/0 bound job, a compute bound job, or a balanced job. It
includes the facility for tape, disk, and unit record I/0 in a < me-
what arbitrary proportion.

(h) The appropriate parameter settings for the synthetic jobs
were determined from predictor equations obtained through regression
analysis. Statistical experimental design techniques were used to
guide the collection of data, and to allow testing of the significance
of the effect that various parameters have on resource demands. As far
as can be determined, these techniques have not previously been applied

to this problem although they are routinely applied in other areas.

7.4 Suggested Areas for Future Research

The methodology which has emerged from this research has not
been subjected to the test of time. The case study of chapter VI
demonstrated the usefulness of many of the procedures employed, how-
ever, they need to be applied to other sets of data at other installa-
tions to gain a degree of acceptance. A complete, ready to run synthe-
tic benchmark was not produced in the case study due to a need to
limit its scope. This needs to be done so that the calibration/valida-
tion phase of the procedure can be more clearly defined.

The “"best" clustering algorithm found for this study is a non-
hierarchical clustering algorithm which requires the analyst to decide
how many clusters to form. This decision is somewhat subjective, and
is certainly data dependent. There is the need for a clustering
algorithm which removes the burden of this decision form the analyst.

This is particularly critical if the procedure is to be automated.
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Development of such an algorithm would minimize the degree of human

intervention in the generation process.

7.5 Conclusions

There is the need for the construction of test workloads for use
in computer performance evaluation studies. This research has produced
a statistical methodology which should prove useful in this construction
process. The feasibility of the major portions of this methodology
was demonstrated with a detailed case study of the Amdahl 470/Vé6 at
Texas A&M Universiviy.

As with any statistical procedure, there are certain precautions
which must go along with the proposed methodology. Two major elements.
principal components analysis and clustering, have been the subject
of widespread misuse in the past [7]. The problem basically comes from
attaching "truth" to the results obtained from these purely mechanical
procedures. The results of principal components analysis are scale
dependent; the results of clustering are dependent upon the distance
metric and weighting scheme used. Both, however, can prove to be

effective tools if used in a sound manner [7].
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APPENDIX A

This appendix describes a computational procedure for representing
an mxn data matrix i in terms of its principal components. This pro- j
cedure was utilized to express the scaled resource demand matrix in
terms of uncorrelated variab]es‘td‘prec1ude the biasing of clustering
results, and to allow a reduction in the dimensionality of the data
matrix as a prelude to clustering.
Let ; = {xijl be an mxn data matrix, where xij represents the
value of the jEh variable for the i£D~data unit. Since, at least in the
workload characterization problem, the variables are expressed in

widely differing units, the data must be scaled to commensurable

ranges. Assume that the elements of i have been standardized so that

each variable represented has mean 0, variance 1.
]

The variance-covariance matrix for the scaled data matrix X is

given by s |
K XTX a2 :
S = = = {Sij}' Since the elements of X

>
were standardized, S is the correlation matrix of the original variables

-

in X.
Now, define a new variable Y] as

n
Y, = I

17, B;X; . where the Xi’ i=1, ..., n,

1

are the original variables, and Bi’ i=1, ..., n, are coefficients to be

determined. The row vector of coefficients B could be defined in a
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number of ways, however the principal component solution requires that

the variance of Y] be maximal [7]. If the data matrix is evaluated in

. > T
terms of the new variable Y], the column vector Y] = (Y]]Y21Y3]...Ym])

given by ;] = iéT would result. Then
Iy T. BITIH S
W exTxe! |
m m

T

Var(Y]) = = BSB .

By choosing the elements of § large, Var(Y]) could be made as large as
-IAT _

desired. Generally, the convention that BB' = 1 (i.e. § is of unit
length) is adopted. This constraint can be linked to the objective
function using a Lagrange multiplier u. Then, a value for E which
yields maximal variance for Y1 ié found by differentiating with respect

to B and setting this derivative equal to zero. Thus

T T

AdD A b
9 rgsa’ + (1 - BBY)] = 258
dB

FY
-2uB =0

To yield maximal variance for Y], one must choose the vector 5 to
satisfy [g - u;] éT = 0. This is an ordinary eigenproblem. Then,

the vector §T is one of the eigenvectors of the matrix §_ It is

easily shown [7] that in this case, ET is the eigenvector corresponding
to the largest eigenvalue A] of g. The variable Yl thus selected is
called the first principal component of i.

Using a procedure similar to the above, it can be shown that the
second principal component of ; is produced using the eigenvector
(selected orthogonal to ET above) corresponding to the second largest
eigenvalue of g. Likewise, the third, fourth, ..., nEh principal
components are obtained using eigenvectors associated with the third,

»
fourth, ..., nﬁh-largest eigenvalues of S.

Once all principal components have been determined, a matrix of
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principal component scores can be computed by the matrix equation

; = ;5, where ? is the matrix of component scores, ; is the standardized
scores, and ; is a matrix of coefficients formed by placing each of the
eigenvectors determined above as a column in ; (the vector corresponding
to the first principal component is the first column, etc.).

Since calculation of principal components is basically an eigen-
problem, it is easily attacked using standard matrix manipulation soft-
ware available at most computer installations. The facilities provided
by the Statistical Analysis System [11] were used to isolate the
principal components and compute the component scores for the workload

data analyzed in Chapter VI.

e
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APPENDIX B

This appendix details the clustering algorithm used in summarizing
the real workload subset. The algorithm is the convergent k-means
approach discussed by Anderberg [7], and the program developed is
modeled after source 1istings contained in that reference.

The convergent k-means approach involves three basic steps [7].
These are: ]

(a) Begin with an initial partition of the data units into
clusters. This initial partition can be arrived at in a variety of

ways. One way is to select k of the data units as cluster centroids.

These k units can be selected at random, the first k units of the data
set used, or some other technique emplioyed. The remainder of the data
units are then assigned to the "nearest" cluster, with the cluster
centroid remaining fixed throughout the initial pass through the data.
Once all data units are assigned to a cluster, the centroid vectors
are updated to reflect the current cluster memberships.

{(b) Take each data unit in sequence, compute the distances to

all cluster centroids, and reallocate the data unit if its parent

cluster is not the "nearest" cluster. In the event of reallocation,

the centroids of both the gaining and losing clusters are updated.
(¢) Repeat step (b) until a full pass is made through the data

set with no reallocation of data units among clusters.

i

1

1

1
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The convergent k-means algorithm described by Anderberg and
implemented for this study consists of a main program (driver) and five
subprograms. The logical relations among the elements are depicted in

figure B.1.

Fig. B.1 Logical Program Linkages

DRIVER

|

EXEC

| | [

KMEAN RESULT

USER DIST

The main program (DRIVER) simply assigns main storage, and then
invokes subroutine EXEC. This subroutine checks that sufficient main

storage has been requested and then invokes subroutines KMEAN and

RESULT in turn. Subroutine KMEAN is the heart of the algorithm. The
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data units are read in, standardized and expressed in terms of principal
component scores through repeated calls to subroutine USER., Clustering
is then accomplished with distance measures between data units and
cluster centroids obtained through invocation of function DIST. Once
clustering is achieved, subroutine RESULT is called to output the
results.

There are a number of decisions which must be made by the analyst
prior to using this algorithm. These include how the initial partition
is arrived at, how many clusters are formed, and what measure of
distance is used.

For this study, the first k data units were used as the "seeds"
of the algorithm. This choice was made for lack of a decidedly better
alternative. Some experimentation with other techniques was done,
however, the results did not consistently favor one over the other.
Thus, the easiest and most straightforward approach was taken.

The particular implementation of the clustering algorithm used
in this study is shown in the following source listings. The listings
contain liberal comments on the different logical stages, rendering

further explanation unnecessary.
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APPENDIX C

This appendix describes data collection using the IBM System
Management Facility (SMF) as it is implemented on the Amdahl 470/Vé
at Texas A&M University. The basic flow of information to SMF is
described, and the particular SMF records which were used in this
study are detailed.

SMF is an optional feature of the IBM System 360/370 operating
systems that can be selected at system generation (SYSGEN) time. SMF
collects system, job management, and data management information, and
can be linked to user-written routines which can monitor the opera-
tion'of jobs or job steps [47]. The information is collected for use
by management and systems analysts inbilling customers or evaluating
system usage.

There is a variety of types of information collected by SMF. They
include

(a) accounting information such as CPU time and device and storage
utilization;

(b) data set activity such as a count of block transfer requests
(EXCPs) and the particular user of the data set;

(¢) Volume information such as the space available on direct
access volumes and error statistics on tape volumes;

(d) system use information such as system wait time and I1/0

4
|




configuration.

The type of data which is collected can be modified by the operator

at each initial program load [IPL]. For example, data set activity is
not presently collected at Texas A&M University.

There are a number of different records written by SMF. The

original manual [47] listed thirty-one such records. Depending upon the

system configuration, some additional records may be added. For exam-
ple, a HASP purge record reflecting each job's characteristics as
viewed by the spooling program and a record monitoring the activity
of the WYLBUR/370 system have been added to the collection of SMF
records used at Texas A&M University.

The various SMF records are written to the primary SMF data
set {SYST1.MANX) at critical points in the lifetime of a job. For
example, the job termination record is written whenever the job is
terminated either normally or abnormally, and data set information is
recorded whenever a data set opened by a user program is scratched,
renamed, closed or processed by end-of-volume (EOV). If SYST.MANX
is defined on a direct-access device, as it is at Texas A&M University,
ar additional SMF data set, SYS1.MANY, is also defined. Data is
recorded on SYST.MANX until its defined extent is reached. At that
time, recording is switched to SYST1.MANY, and SYST.MANX is copied to
a dump data set (magnetic tape). Periodically, the dump data ets
are merged to provide a complete record of system activity over some
period of time (i.e. one month).

The monthly SMF files provide a rich source of resource demand
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information which can be used for workload characterization studijes.
The particular SMF records which were used in this study are detailed
in the following tables. They are included here not only for complete-

ness, but also to point out the wide range of workload descriptors

which is available, at least on IBM compatible equipment, without

recourse to monitor data. ¥
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Table C.1 Type 4 (Step End) Record [47]

Decimal Displacement Field Size Contents
0 1 Reserved (zero)
1 1 Record type (4)
2 4 Time of end of step
6 4 Date of end of step
10 2 System identification
12 2 System model identifier
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 1 Step number
39 4 Step initiation time
43 4 Step initiation date
47 4 Number of card image
records in input data set
5] 2 Step completion code
53 1 Step priority
54 8 Program name
62 8 Name of executed step
70 2 Region size in heirarchy0
72 2 Region size in heirarchyl
74 4 Storage used in heirarchy0
78 4 Storage used in heirarchy 1
82 1 Storage protect key
83 3 Reserved
86 4 Device allocation time
90 4 Problem program load time
94 8 Reserved
*102 variable Devices used by step
variable 1 Total Tength of next fields
variable 3 Step CPU time
variable 1 No. of accounting fields
variable variable Accounting fields

* - Bytes 0 and 1 contain the length of the field. For each
assigned device there is an eight byte field giving the device class,
unit type, channel and unit address, and a count of the EXCPs issued
for the device.
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Table C.2 Type 5 (Job Termination) Record [47]

Decimal Displacement Field Size Contents
0 1 Reserved (zero)
1 1 Record type (5)
2 4 Time of end of job
6 4 Date of end of job
10 2 System identification
12 2 System model identifier
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 1 Number of steps in job
39 4 Job initation time
43 4 Job initiation date
47 4 Number of card images
in input data set
51 2 Job completion code
53 1 Job priority
54 4 Reader stop time
58 4 Reader stop date
62 1 Job termination indicator
63 5 Qutput class indicator
68 1 Checkpoint/restart
indicator
69 1 Reader device class
70 1 Reader unit type
71 1 Job input class
72 1 Storage protect key
73 19 Reserved
92 1 Length of rest of record
93 20 Programmer's name
113 3 CPU time for job
116 1 Number of accounting fields
117 variable Accounting fields

- N i
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F
: Table C.3 Type 26 (HASP Purge) Record [47]
:
Decimal_Displacement Field Size Contents
0 ) Reserved (zero)
1 1 Record type (26)
2 4 Time record copied
6 4 Date record copied
10 2 System identification
12 2 System model identification
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 4 Reserved
42 2 Subsystem identification (2)
44 2 Section indicator
46 2 Descriptor section length
] 48 3 Reserved
51 1 Job information j
52 4 HASP assigned job number
56 8 Job name
64 20 Programmer's name
84 1 Message class
85 1 Job class
86 2 Execution selection priority
88 2 Output selection priority
a0 2 Input route code
92 8 Logical input device name
100 4 Programmer's account number
104 4 Programmer's box number
108 4 Estimated execution time
112 4 Estimated output lines
116 4 Estimated punched output !
120 4 Default output form number |
124 2 Print copy count j
126 2 Lines per page ﬁ
128 2 Print route code
130 2 Punch route code
132 2 Events section length
134 2 Reserved
136 4 Reader stop time
140 4 Reader stop date
144 16 Reserved
160 4 Execution start time
164 4 Execution start date
168 4 Execution stop time
172 4 Execution stop date
176 4 Output start time
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Table C.3 continued

Decimal Displacement Field Size Contents
180 4 Output start date
184 4 Output stop time
188 4 Output stop date
192 2 Actuals section length
194 2 Reserved
» 196 4 Number of input cards
@ 200 4 Generated output lines
‘ 204 4 Generated punched output
208 4 Reserved
212 4 Printed lines
216 4 Printed pages
s 220 4 Punched cards
' 224 2 Accounting identification
226 1 Job execution level
227 1 Local flags
F 228 2 Region in 64K units
ST 230 1 Max disc requests in any step
231 1 Max tape 7 requests in any step
232 1 Max tape 9 requests in any step
233 1 Customer group data
234 4 Job selection priority
238 4 Accumulated customer time
242 4 Estimated I/0 time
246 1 Print train mounts
247 1 Forms mounts
248 1 Accumulated tape mounts
249 1 Accumulated disc mounts
250 4 CPU time (.01 sec)
254 4 Charge calculation
258 4 170 time (.01 sec)
262 4 Total pages in
266 4 Total pages out
270 1 Cancel rerun count
2N 2 Cancel rerun explanations
273 4 CPU time lost on reruns
277 4 Memory charges lost on reruns
281 4 1/0 time lost on reruns
285 16 Reserved
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APPENDIX D

This appendix describes the two synthetic jobs designed as a part
of this study. The first job was developed to emulate the resource
demands of Autobatch cluster 4 (table 6.5(p.91)). The resource descrip- |
tor set used to characterize the demands of Autobatch jobs contained
only three elements hence the synthetic job is quite simple. The second
Jjob was designed to emulate the resource demands of Batch cluster 6 (ta-
ble 6.10(p.103)). The expanded resource descriptor set used to charac-
terize the Batch jobs necessitates a more complex synthetic job.

The synthetic job designed for Autobatch cluster 4 is designed
to allow the user to specify indirectly the number of lines printed and
the total CPU time used by setting two parameters: NRLIN and NITER.

The appropriate settings for these parameters may be determined using
predictor equations established in section 6.7. A loop control
parameter LIMIT = Maximum {NRLIN, NITER} is first calculated. The main
loop is then executed a total of LIMIT times. The first NRLIN times
through the loop, an output line is produced. Other actions accom-
plished each time through the loop include calculating two pseudo-
random numbers using a multiplicative congruential scheme and perform-

ing some simple calculations on the second of these two generated

numbers. The particular implementation of the job used in this study

(WATFIV) is shown in figure D.1.
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The synthetic job designed for Batch cluster 6 is somewhat more

complex than the one designed for Autobatch cluster 4. Four parameters:

NITER, NOUT, NTAP, and NDIS are specified to control the resource
usage. NITER controls the number of times the "compute" loop is
executed, NOUT controls how many lines of output are produced, NTAP
controls how many records are read from a tape file, and NDIS controls
how many records are read from a disk file.

The first task accomplished is to establish the loop control
parameter LIMIT = Maximum {NITER, NOUT, NTAP, NDIS}. Within the main
Toop a pseudo-random number is produced. In addition, the first NOUT
times through the loop a line is output; the first NTAP times through
b the loop a record is read from the tape file; the first NDIS times
through the loop a record is read from the disk file; and the first

NITER times through the Toop a compute routine is invoked. The compute

routine involves filling two 5x5 matrices with random numbers and then

calling a routine to multiply the two matrices to form a third 5x5
product matrix. The appropriate settings for the parameters to produce
a given demand pattern can be determined from predictor equations

established in section 6.7. The particular implementation of the job

used in this study (PL/1) is shown in figure D.2.
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Wayne Thomas Graybeal was born to Stanley R. and Viola S. Graybeal
on June 2, 1944 in Nucla, Colorado. He obtained the Bachelorof Science
degree with a major in Mathematics from the University of Okliahoma in
1969. In 1970, he was awarded the Master of Arts degree with a major
in Mathematics from the University of Arizona.

He enlisted in the United States Air Force in June, 1962, and
has served continuously since that time. He was commissioned in May,
1969. His mcst recent assignments have been as a Space Object Identi-
fication Analyst, 13En-Missile Warning Squadron, Clear AFS, Alaska
(1970-71); Instructor, Course 30ZR2025B, USAFSAAS, Keesler AFB, Mis-
sissippi (1971-74); and Instructor/Assistant Professor, Department
of Mathematical Sciences, U.S. Air Force Academy, Colorado (1974-197¢).

Mr. Graybeal was married to Annie Elizabeth Pilcher on April 10,
1964. Three daughters (Shawn - 1965, Sandra - 1968, Susan - 1972)
were born to this union.

Mr. Graybeal's permanent mailing address is:

P.0. Box 94
Nucla, Colorado 81424

The typist for this dissertation was Mrs. Annie E. Graybeal.
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